Analysis of Various Fractional Order Derivatives Approaches in Assessment of Graphomotor Difficulties
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F20%3APU138039" target="_blank" >RIV/00216305:26220/20:PU138039 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14210/20:00114562
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9281290" target="_blank" >https://ieeexplore.ieee.org/document/9281290</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2020.3042591" target="_blank" >10.1109/ACCESS.2020.3042591</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analysis of Various Fractional Order Derivatives Approaches in Assessment of Graphomotor Difficulties
Popis výsledku v původním jazyce
Graphomotor disabilities (GD) are present in up to 30% of school-aged children and are associated with several symptoms in the field of kinematics. Although the basic kinematic features such as velocity, acceleration, and jerk were proved to effectively quantify these symptoms, a recent body of research identified that the theory of fractional calculus can be used to even improve the objective GD assessment. The goal of this study is to extend the current knowledge in this field and explore the abilities of several fractional order derivatives (FD) approximations to estimate the severity of GD in the children population. We enrolled 85 children attending the 3rd and 4th grade of primary school, who performed a combined loop task on a digitizing tablet. Their performance was rated by psychologists and the online handwriting signals were parametrised by kinematic features utilising three FD approximations: Grünwald-Letnikov’s, Riemann–Liouville’s, and Caputo’s. In this study, we showed the differences across the employed FD approaches for the same kinematic handwriting features and their potential in GD analysis. The results suggest that the Riemann-Liouville’s approximation in the field of quantitative GD analysis outperforms the other ones. Using this approach, we were able to estimate the overall score with a low error of 0.65 points, while the scale range is 4. In fact, the psychologists tend to make the error even higher.
Název v anglickém jazyce
Analysis of Various Fractional Order Derivatives Approaches in Assessment of Graphomotor Difficulties
Popis výsledku anglicky
Graphomotor disabilities (GD) are present in up to 30% of school-aged children and are associated with several symptoms in the field of kinematics. Although the basic kinematic features such as velocity, acceleration, and jerk were proved to effectively quantify these symptoms, a recent body of research identified that the theory of fractional calculus can be used to even improve the objective GD assessment. The goal of this study is to extend the current knowledge in this field and explore the abilities of several fractional order derivatives (FD) approximations to estimate the severity of GD in the children population. We enrolled 85 children attending the 3rd and 4th grade of primary school, who performed a combined loop task on a digitizing tablet. Their performance was rated by psychologists and the online handwriting signals were parametrised by kinematic features utilising three FD approximations: Grünwald-Letnikov’s, Riemann–Liouville’s, and Caputo’s. In this study, we showed the differences across the employed FD approaches for the same kinematic handwriting features and their potential in GD analysis. The results suggest that the Riemann-Liouville’s approximation in the field of quantitative GD analysis outperforms the other ones. Using this approach, we were able to estimate the overall score with a low error of 0.65 points, while the scale range is 4. In fact, the psychologists tend to make the error even higher.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50102 - Psychology, special (including therapy for learning, speech, hearing, visual and other physical and mental disabilities);
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-16835S" target="_blank" >GA18-16835S: Výzkum pokročilých metod diagnózy a hodnocení vývojové dysgrafie založených na kvantitativní analýze online písma a kresby</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
—
Svazek periodika
8
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
218234-218244
Kód UT WoS článku
000598238200001
EID výsledku v databázi Scopus
2-s2.0-85097769848