Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Impact of loss function on multi-frame super-resolution

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F21%3APU140865" target="_blank" >RIV/00216305:26220/21:PU140865 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2021_sbornik_1.pdf" target="_blank" >https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2021_sbornik_1.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Impact of loss function on multi-frame super-resolution

  • Popis výsledku v původním jazyce

    Nowadays, one of the most popular topics in image processing is super-resolution. This problem is getting more actual even in security, since monitoring cameras are everywhere and in the case of an incident, it is necessary to recognize a person from records. A lot of approaches exist, which are able to reconstruct image, and the most of them are based on deep learning. The main focus of this work is to analyze, which loss function for neural networks is more effective for real-world image reconstruction. For this experiment chosen architecture and dataset are used for multi-frame super-resolution for 8 scaling.

  • Název v anglickém jazyce

    Impact of loss function on multi-frame super-resolution

  • Popis výsledku anglicky

    Nowadays, one of the most popular topics in image processing is super-resolution. This problem is getting more actual even in security, since monitoring cameras are everywhere and in the case of an incident, it is necessary to recognize a person from records. A lot of approaches exist, which are able to reconstruct image, and the most of them are based on deep learning. The main focus of this work is to analyze, which loss function for neural networks is more effective for real-world image reconstruction. For this experiment chosen architecture and dataset are used for multi-frame super-resolution for 8 scaling.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings I of the 27th Conference STUDENT EEICT 2021: General papers

  • ISBN

    978-80-214-5942-7

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

    601-605

  • Název nakladatele

    Brno University of Technology, Faculty of Electrical Engineering and Communication

  • Místo vydání

    Brno

  • Místo konání akce

    Brno

  • Datum konání akce

    27. 4. 2021

  • Typ akce podle státní příslušnosti

    CST - Celostátní akce

  • Kód UT WoS článku