Planar 3D Transfer Learning for End to End Unimodal MRI Unbalanced Data Segmentation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F21%3APU141428" target="_blank" >RIV/00216305:26220/21:PU141428 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-030-76423-4_10" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-76423-4_10</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICPR48806.2021.9412150" target="_blank" >10.1109/ICPR48806.2021.9412150</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Planar 3D Transfer Learning for End to End Unimodal MRI Unbalanced Data Segmentation
Popis výsledku v původním jazyce
We present a novel approach of 2D to 3D transfer learning based on mapping pre-trained 2D convolutional neural network weights into planar 3D kernels. The method is validated by the proposed planar 3D res-u-net network with encoder transferred from the 2D VGG-16, which is applied for a single-stage unbalanced 3D image data segmentation. In particular, we evaluate the method on the MICCAI 2016 MS lesion segmentation challenge dataset utilizing solely fluid-attenuated inversion recovery (FLAIR) sequence without brain extraction for training and inference to simulate real medical praxis. The planar 3D res-u-net network performed the best both in sensitivity and Dice score amongst end to end methods processing raw MRI scans and achieved comparable Dice score to a state-of-the-art unimodal not end to end approach. Complete source code was released under the open-source license, and this paper complies with the Machine learning reproducibility checklist. By implementing practical transfer learning for 3D data representation, we could segment heavily unbalanced data without selective sampling and achieved more reliable results using less training data in a single modality. From a medical perspective, the unimodal approach gives an advantage in real praxis as it does not require co-registration nor additional scanning time during an examination. Although modern medical imaging methods capture high-resolution 3D anatomy scans suitable for computer-aided detection system processing, deployment of automatic systems for interpretation of radiology imaging is still rather theoretical in many medical areas. Our work aims to bridge the gap by offering a solution for partial research questions.
Název v anglickém jazyce
Planar 3D Transfer Learning for End to End Unimodal MRI Unbalanced Data Segmentation
Popis výsledku anglicky
We present a novel approach of 2D to 3D transfer learning based on mapping pre-trained 2D convolutional neural network weights into planar 3D kernels. The method is validated by the proposed planar 3D res-u-net network with encoder transferred from the 2D VGG-16, which is applied for a single-stage unbalanced 3D image data segmentation. In particular, we evaluate the method on the MICCAI 2016 MS lesion segmentation challenge dataset utilizing solely fluid-attenuated inversion recovery (FLAIR) sequence without brain extraction for training and inference to simulate real medical praxis. The planar 3D res-u-net network performed the best both in sensitivity and Dice score amongst end to end methods processing raw MRI scans and achieved comparable Dice score to a state-of-the-art unimodal not end to end approach. Complete source code was released under the open-source license, and this paper complies with the Machine learning reproducibility checklist. By implementing practical transfer learning for 3D data representation, we could segment heavily unbalanced data without selective sampling and achieved more reliable results using less training data in a single modality. From a medical perspective, the unimodal approach gives an advantage in real praxis as it does not require co-registration nor additional scanning time during an examination. Although modern medical imaging methods capture high-resolution 3D anatomy scans suitable for computer-aided detection system processing, deployment of automatic systems for interpretation of radiology imaging is still rather theoretical in many medical areas. Our work aims to bridge the gap by offering a solution for partial research questions.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2020 25th International Conference on Pattern Recognition (ICPR)
ISBN
978-1-7281-8808-9
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
1-8
Název nakladatele
IEEE
Místo vydání
Online
Místo konání akce
Milano
Datum konání akce
10. 1. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000678409206025