Fast Temporal Convolutions for Real-Time Audio Signal Processing
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F22%3APU145255" target="_blank" >RIV/00216305:26220/22:PU145255 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fast Temporal Convolutions for Real-Time Audio Signal Processing
Popis výsledku v původním jazyce
This paper introduces the possibilities of optimizing neural network convolutional layers for modeling nonlinear audio systems and effects. Enhanced methods for real-time dilated convolutions are presented to achieve faster signal processing times than in previous work. Due to the improved implementation of convolutional layers, a significant decrease in computational requirements was observed and validated on different configurations of single layers with dilated convolutions and WaveNet-style feedforward neural network models. In most cases, equivalent signal processing times were achieved to those using recurrent neural networks with Long Short-Term Memory units and Gated Recurrent Units, which are considered state-of-the-art in the field of black-box virtual analog modeling
Název v anglickém jazyce
Fast Temporal Convolutions for Real-Time Audio Signal Processing
Popis výsledku anglicky
This paper introduces the possibilities of optimizing neural network convolutional layers for modeling nonlinear audio systems and effects. Enhanced methods for real-time dilated convolutions are presented to achieve faster signal processing times than in previous work. Due to the improved implementation of convolutional layers, a significant decrease in computational requirements was observed and validated on different configurations of single layers with dilated convolutions and WaveNet-style feedforward neural network models. In most cases, equivalent signal processing times were achieved to those using recurrent neural networks with Long Short-Term Memory units and Gated Recurrent Units, which are considered state-of-the-art in the field of black-box virtual analog modeling
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22)
ISBN
978-3-200-08599-2
ISSN
2413-6689
e-ISSN
—
Počet stran výsledku
7
Strana od-do
115-121
Název nakladatele
DAFx
Místo vydání
Vídeň
Místo konání akce
Vídeň
Datum konání akce
6. 9. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—