DeepPlayer: An open-source SignalPlant plugin for deep learning inference
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F22%3APU146235" target="_blank" >RIV/00216305:26220/22:PU146235 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68081731:_____/23:00565476 RIV/00216208:11120/23:43924304 RIV/00064173:_____/23:43924304 RIV/00159816:_____/23:00079792
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/epdf/10.1002/spe.3159" target="_blank" >https://onlinelibrary.wiley.com/doi/epdf/10.1002/spe.3159</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/spe.3159" target="_blank" >10.1002/spe.3159</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
DeepPlayer: An open-source SignalPlant plugin for deep learning inference
Popis výsledku v původním jazyce
Background and Objective Machine learning has become a powerful tool in several computation domains. The most progressive way of machine learning, deep learning, has already surpassed several algorithms designed by human experts. It also applies to the field of biomedical signal processing. However, while many experts produce deep learning models, there is no software platform for signal processing, allowing the convenient use of pre-trained deep learning models and evaluating them using any inspected signal. This may also hinder understanding, interpretation, and explanation of results. For these reasons, we designed DeepPlayer. It is a plugin for the free signal processing software SignalPlant. The plugin allows loading deep learning models saved in the Open Neural Network Exchange (ONNX) file format and evaluating them on any given signal. Methods The DeepPlayer plugin and its graphical user interface were designed in C# programming language and the .NET framework. We used the inference library OnnxRuntime, which supports graphics card acceleration. The inference is executed in asynchronous tasks for a live preview and evaluation of the signals. Model outputs can be exported back to SignalPlant for further processing, such as peak detection or thresholding. Results We developed the DeepPlayer plugin to evaluate deep learning models in SignalPlant. The plugin keeps with SignalPlant's interactive work with signals, such as live preview or easy selection of associated signals. The plugin can load classification or regression models and allows standard pre-processing and post-processing methods. We prepared several deep learning models to test the plugin. Additionally, we provide a tutorial training script that outputs an ONNX format model with correctly set metadata information. These, and the source code of the DeepPlayer plugin, are publicly accessible via GitHub and Google Colab service. Conclusion The DeepPlayer plugin allows running deep learning models easily
Název v anglickém jazyce
DeepPlayer: An open-source SignalPlant plugin for deep learning inference
Popis výsledku anglicky
Background and Objective Machine learning has become a powerful tool in several computation domains. The most progressive way of machine learning, deep learning, has already surpassed several algorithms designed by human experts. It also applies to the field of biomedical signal processing. However, while many experts produce deep learning models, there is no software platform for signal processing, allowing the convenient use of pre-trained deep learning models and evaluating them using any inspected signal. This may also hinder understanding, interpretation, and explanation of results. For these reasons, we designed DeepPlayer. It is a plugin for the free signal processing software SignalPlant. The plugin allows loading deep learning models saved in the Open Neural Network Exchange (ONNX) file format and evaluating them on any given signal. Methods The DeepPlayer plugin and its graphical user interface were designed in C# programming language and the .NET framework. We used the inference library OnnxRuntime, which supports graphics card acceleration. The inference is executed in asynchronous tasks for a live preview and evaluation of the signals. Model outputs can be exported back to SignalPlant for further processing, such as peak detection or thresholding. Results We developed the DeepPlayer plugin to evaluate deep learning models in SignalPlant. The plugin keeps with SignalPlant's interactive work with signals, such as live preview or easy selection of associated signals. The plugin can load classification or regression models and allows standard pre-processing and post-processing methods. We prepared several deep learning models to test the plugin. Additionally, we provide a tutorial training script that outputs an ONNX format model with correctly set metadata information. These, and the source code of the DeepPlayer plugin, are publicly accessible via GitHub and Google Colab service. Conclusion The DeepPlayer plugin allows running deep learning models easily
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SOFTWARE-PRACTICE & EXPERIENCE
ISSN
0038-0644
e-ISSN
1097-024X
Svazek periodika
neuveden
Číslo periodika v rámci svazku
October
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
10
Strana od-do
1-10
Kód UT WoS článku
000877357800001
EID výsledku v databázi Scopus
2-s2.0-85141344500