Independent Channel Residual Convolutional Network for Gunshot Detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F22%3APU146711" target="_blank" >RIV/00216305:26220/22:PU146711 - isvavai.cz</a>
Výsledek na webu
<a href="https://thesai.org/Publications/ViewPaper?Volume=13&Issue=4&Code=IJACSA&SerialNo=108" target="_blank" >https://thesai.org/Publications/ViewPaper?Volume=13&Issue=4&Code=IJACSA&SerialNo=108</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14569/IJACSA.2022.01304108" target="_blank" >10.14569/IJACSA.2022.01304108</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Independent Channel Residual Convolutional Network for Gunshot Detection
Popis výsledku v původním jazyce
The main purpose of this work is to propose a robust approach for dangerous sound events detection (e.g. gunshots) to improve recent surveillance systems. Despite the fact that the detection and classification of different sound events has a long history in signal processing, the analysis of environmental sounds is still challenging. The most recent works aim to prefer the time-frequency 2-D representation of sound as input to feed convolutional neural networks. This paper includes an analysis of known architectures as well as a newly proposed Independent Channel Residual Convolutional Network architecture based on standard residual blocks. Our approach consists of processing three different types of features in the individual channels. The UrbanSound8k and the Free Firearm Sound Library audio datasets are used for training and testing data generation, achieving a 98 % F1 score. The model was also evaluated in the wild using manually annotated movie audio track, achieving a 44 % F1 score, which is not too high but still better than other state-of-the-art techniques.
Název v anglickém jazyce
Independent Channel Residual Convolutional Network for Gunshot Detection
Popis výsledku anglicky
The main purpose of this work is to propose a robust approach for dangerous sound events detection (e.g. gunshots) to improve recent surveillance systems. Despite the fact that the detection and classification of different sound events has a long history in signal processing, the analysis of environmental sounds is still challenging. The most recent works aim to prefer the time-frequency 2-D representation of sound as input to feed convolutional neural networks. This paper includes an analysis of known architectures as well as a newly proposed Independent Channel Residual Convolutional Network architecture based on standard residual blocks. Our approach consists of processing three different types of features in the individual channels. The UrbanSound8k and the Free Firearm Sound Library audio datasets are used for training and testing data generation, achieving a 98 % F1 score. The model was also evaluated in the wild using manually annotated movie audio track, achieving a 44 % F1 score, which is not too high but still better than other state-of-the-art techniques.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Advanced Computer Science and Applications
ISSN
2156-5570
e-ISSN
—
Svazek periodika
13
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
9
Strana od-do
950-958
Kód UT WoS článku
000798606400001
EID výsledku v databázi Scopus
2-s2.0-85130090786