Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Real-Time Autonomous Vehicle Sensor Performance Assessment in Adverse Weather Conditions

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU148338" target="_blank" >RIV/00216305:26220/23:PU148338 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2023_sbornik_1.pdf" target="_blank" >https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2023_sbornik_1.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Real-Time Autonomous Vehicle Sensor Performance Assessment in Adverse Weather Conditions

  • Popis výsledku v původním jazyce

    The future of automotive industry appears to be intricately linked to Advanced Driver Assistance Systems (ADAS) and various levels of Automated Driving Systems (ADS). Over the years, numerous companies have incorporated sensors into their vehicles, hovewer, none have yet achieved the development of a completely robust and self-aware system capable of operating safely in adverse weather conditions. To guarantee safety, the vehicle must possess an awareness of its environment and the current performance of its sensors. This includes the ability to detect not only currrent weather conditions such as rain, fog, haze, and snow, but also smoke, soiling from various sources, and extreme lighting conditions such as glare or low light. It is crucial for the vehicle to detect those conditions in real-time without delaying decision-making systems. This study summarises the effects of various environmental threats on commonly used sensors in ADAS or ADS and proposes algorithms to detect degrading sensor performan

  • Název v anglickém jazyce

    Real-Time Autonomous Vehicle Sensor Performance Assessment in Adverse Weather Conditions

  • Popis výsledku anglicky

    The future of automotive industry appears to be intricately linked to Advanced Driver Assistance Systems (ADAS) and various levels of Automated Driving Systems (ADS). Over the years, numerous companies have incorporated sensors into their vehicles, hovewer, none have yet achieved the development of a completely robust and self-aware system capable of operating safely in adverse weather conditions. To guarantee safety, the vehicle must possess an awareness of its environment and the current performance of its sensors. This includes the ability to detect not only currrent weather conditions such as rain, fog, haze, and snow, but also smoke, soiling from various sources, and extreme lighting conditions such as glare or low light. It is crucial for the vehicle to detect those conditions in real-time without delaying decision-making systems. This study summarises the effects of various environmental threats on commonly used sensors in ADAS or ADS and proposes algorithms to detect degrading sensor performan

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    20204 - Robotics and automatic control

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/8A20002" target="_blank" >8A20002: Trustable architectures with acceptable residual risk for the electric, connected and automated cars</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů