Real-Time Autonomous Vehicle Sensor Performance Assessment in Adverse Weather Conditions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU148338" target="_blank" >RIV/00216305:26220/23:PU148338 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2023_sbornik_1.pdf" target="_blank" >https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2023_sbornik_1.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Real-Time Autonomous Vehicle Sensor Performance Assessment in Adverse Weather Conditions
Popis výsledku v původním jazyce
The future of automotive industry appears to be intricately linked to Advanced Driver Assistance Systems (ADAS) and various levels of Automated Driving Systems (ADS). Over the years, numerous companies have incorporated sensors into their vehicles, hovewer, none have yet achieved the development of a completely robust and self-aware system capable of operating safely in adverse weather conditions. To guarantee safety, the vehicle must possess an awareness of its environment and the current performance of its sensors. This includes the ability to detect not only currrent weather conditions such as rain, fog, haze, and snow, but also smoke, soiling from various sources, and extreme lighting conditions such as glare or low light. It is crucial for the vehicle to detect those conditions in real-time without delaying decision-making systems. This study summarises the effects of various environmental threats on commonly used sensors in ADAS or ADS and proposes algorithms to detect degrading sensor performan
Název v anglickém jazyce
Real-Time Autonomous Vehicle Sensor Performance Assessment in Adverse Weather Conditions
Popis výsledku anglicky
The future of automotive industry appears to be intricately linked to Advanced Driver Assistance Systems (ADAS) and various levels of Automated Driving Systems (ADS). Over the years, numerous companies have incorporated sensors into their vehicles, hovewer, none have yet achieved the development of a completely robust and self-aware system capable of operating safely in adverse weather conditions. To guarantee safety, the vehicle must possess an awareness of its environment and the current performance of its sensors. This includes the ability to detect not only currrent weather conditions such as rain, fog, haze, and snow, but also smoke, soiling from various sources, and extreme lighting conditions such as glare or low light. It is crucial for the vehicle to detect those conditions in real-time without delaying decision-making systems. This study summarises the effects of various environmental threats on commonly used sensors in ADAS or ADS and proposes algorithms to detect degrading sensor performan
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
<a href="/cs/project/8A20002" target="_blank" >8A20002: Trustable architectures with acceptable residual risk for the electric, connected and automated cars</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů