2D Physical Modelling of Semiconductor Equations for Verification of 1D Lumped-Charge Model of Bipolar Power Devices
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU148902" target="_blank" >RIV/00216305:26220/23:PU148902 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2023_sbornik_2_v2.pdf" target="_blank" >https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2023_sbornik_2_v2.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.13164/eeict.2023.181" target="_blank" >10.13164/eeict.2023.181</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
2D Physical Modelling of Semiconductor Equations for Verification of 1D Lumped-Charge Model of Bipolar Power Devices
Popis výsledku v původním jazyce
The paper demonstrates a finite-element method (FEM) simulation model of semiconductor devices operation. Classical semiconductor equations employing drift, diffusion and generation-recombination transport of charge carriers are established and variational forms for FEM assembly are derived in detail, including a basic voltage and current boundary conditions. Mathematically, a system of mutually coupled nonlinear equations need to be solved, which requires extensive use of nonlinear iteration solver. The derived model was coded in Python by strict use of open source tools, mainly grouped around FEniCSx project. Graphic output figures and characteristics for basic semiconductor structures are presented to demonstrate the functionality of model. An ultimate goal of presented effort is derivation and verification of simplified semi-analytical model of Insulated-gate bipolar transistor (IGBT), including precise transient behavior. This kind of model should be calibrated by use of measurement-obtained data, so the qualitative behavior of device physics at reasonable computational cost is of primary interest of presented FEM model as opposed to commercial device development tools aiming at precise quantitative outputs; which need to be experimentally calibrated even so. As an additional step to simplified one-dimensional model usability verification, results of unusual way of experimental estimation of minority-carrier excess charge within power bipolar transistor collector and base during on-state is presented and compared to simulation result.i
Název v anglickém jazyce
2D Physical Modelling of Semiconductor Equations for Verification of 1D Lumped-Charge Model of Bipolar Power Devices
Popis výsledku anglicky
The paper demonstrates a finite-element method (FEM) simulation model of semiconductor devices operation. Classical semiconductor equations employing drift, diffusion and generation-recombination transport of charge carriers are established and variational forms for FEM assembly are derived in detail, including a basic voltage and current boundary conditions. Mathematically, a system of mutually coupled nonlinear equations need to be solved, which requires extensive use of nonlinear iteration solver. The derived model was coded in Python by strict use of open source tools, mainly grouped around FEniCSx project. Graphic output figures and characteristics for basic semiconductor structures are presented to demonstrate the functionality of model. An ultimate goal of presented effort is derivation and verification of simplified semi-analytical model of Insulated-gate bipolar transistor (IGBT), including precise transient behavior. This kind of model should be calibrated by use of measurement-obtained data, so the qualitative behavior of device physics at reasonable computational cost is of primary interest of presented FEM model as opposed to commercial device development tools aiming at precise quantitative outputs; which need to be experimentally calibrated even so. As an additional step to simplified one-dimensional model usability verification, results of unusual way of experimental estimation of minority-carrier excess charge within power bipolar transistor collector and base during on-state is presented and compared to simulation result.i
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings II of the 29 th Conference STUDENT EEICT 2023 Selected papers
ISBN
978-80-214-6154-3
ISSN
2788-1334
e-ISSN
—
Počet stran výsledku
7
Strana od-do
181-187
Název nakladatele
Brno University of Technology, Faculty of Electrical Engineering and Communication
Místo vydání
Brno, Czech Republic
Místo konání akce
Brno
Datum konání akce
25. 4. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—