DMRBNet: Dilated Multi-scale Residual Block-based Deep Network for Detection of Breast Cancer from MRI Images
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU149573" target="_blank" >RIV/00216305:26220/23:PU149573 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
DMRBNet: Dilated Multi-scale Residual Block-based Deep Network for Detection of Breast Cancer from MRI Images
Popis výsledku v původním jazyce
Breast cancer (BC) is a common type of cancer that develops from breast tissue cells. Early detection is critical, and mammography is an important tool for this. A biopsy is indicated for lesions with a risk of malignancy of more than 2%, however, only a tiny number of them are confirmed to be malignant. Magnetic Resonance Imaging (MRI) is employed to eliminateunneeded biopsies, but it is a sophisticated and time-consuming operation requiring specialized knowledge. To improve breast cancer diagnosis, a computer-aided diagnostic system using MRI images was developed. The system utilizes a novel neural network called dilated multi-scale residual block-based convolutional neural network (DMRBNet), which effectively extracts features from various image regions. Compared to seven recent advanced approaches, DMRBNet demonstrated superior performance on the BC-MRI dataset. The accuracy of the network is 98.57%, and the error rate is 0.1005. These findings highlight its potential for medical and industrial applications in breast cancer detection.
Název v anglickém jazyce
DMRBNet: Dilated Multi-scale Residual Block-based Deep Network for Detection of Breast Cancer from MRI Images
Popis výsledku anglicky
Breast cancer (BC) is a common type of cancer that develops from breast tissue cells. Early detection is critical, and mammography is an important tool for this. A biopsy is indicated for lesions with a risk of malignancy of more than 2%, however, only a tiny number of them are confirmed to be malignant. Magnetic Resonance Imaging (MRI) is employed to eliminateunneeded biopsies, but it is a sophisticated and time-consuming operation requiring specialized knowledge. To improve breast cancer diagnosis, a computer-aided diagnostic system using MRI images was developed. The system utilizes a novel neural network called dilated multi-scale residual block-based convolutional neural network (DMRBNet), which effectively extracts features from various image regions. Compared to seven recent advanced approaches, DMRBNet demonstrated superior performance on the BC-MRI dataset. The accuracy of the network is 98.57%, and the error rate is 0.1005. These findings highlight its potential for medical and industrial applications in breast cancer detection.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/VK01010153" target="_blank" >VK01010153: Vývoj umělé inteligence pro systém multimodální nedestruktivní forenzní analýzy materiálů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
15th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT)
ISBN
979-8-3503-9328-6
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
38-43
Název nakladatele
Neuveden
Místo vydání
Ghent
Místo konání akce
Gent, Belgium
Datum konání akce
30. 10. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—