Secure blockchain enabled Cyber- Physical health systems using ensemble convolution neural network classification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F22%3A50019638" target="_blank" >RIV/62690094:18470/22:50019638 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0045790622003172?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0045790622003172?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.compeleceng.2022.108058" target="_blank" >10.1016/j.compeleceng.2022.108058</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Secure blockchain enabled Cyber- Physical health systems using ensemble convolution neural network classification
Popis výsledku v původním jazyce
Breast cancer is the most widely recognized malignancy affecting women. The risk of death has been consistently associated with breast cancer. In addition, the cyber-physical system (CPS)is the processing and data transfer of physical processes. This study presents a safe, intrusive, blockchain-based data transfer using the CPS classification model in the health industry to overcome the problem. Considering the challenges in breast tumor classification, this paper accords a reasonable arrangement to examine the mammogram image to discover the detection and classification of various stages of cancer. The breast cancer detection images obtained from the mammogram were processed and experimentally evaluated for parameters such as a sensitivity of 90%, a specificity of 98%,and a classification accuracy of 98%.The results of the ensemble convolution neural network (E-CNN) classifier, such as VGG-16 and Inception-v3, which separates ordinary and unusual cases from the applied advanced mammographic image, will be projected by comparing the two existing methods.
Název v anglickém jazyce
Secure blockchain enabled Cyber- Physical health systems using ensemble convolution neural network classification
Popis výsledku anglicky
Breast cancer is the most widely recognized malignancy affecting women. The risk of death has been consistently associated with breast cancer. In addition, the cyber-physical system (CPS)is the processing and data transfer of physical processes. This study presents a safe, intrusive, blockchain-based data transfer using the CPS classification model in the health industry to overcome the problem. Considering the challenges in breast tumor classification, this paper accords a reasonable arrangement to examine the mammogram image to discover the detection and classification of various stages of cancer. The breast cancer detection images obtained from the mammogram were processed and experimentally evaluated for parameters such as a sensitivity of 90%, a specificity of 98%,and a classification accuracy of 98%.The results of the ensemble convolution neural network (E-CNN) classifier, such as VGG-16 and Inception-v3, which separates ordinary and unusual cases from the applied advanced mammographic image, will be projected by comparing the two existing methods.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
COMPUTERS & ELECTRICAL ENGINEERING
ISSN
0045-7906
e-ISSN
1879-0755
Svazek periodika
101
Číslo periodika v rámci svazku
JUL 2022
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
12
Strana od-do
"Article Number: 108058"
Kód UT WoS článku
000849743000007
EID výsledku v databázi Scopus
2-s2.0-85129691568