Potential Role of Artificial Intelligence in Breast Cancer Detection- A Review
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F22%3A50019470" target="_blank" >RIV/62690094:18450/22:50019470 - isvavai.cz</a>
Výsledek na webu
<a href="https://ijettjournal.org/archive/ijett-v70i7p214" target="_blank" >https://ijettjournal.org/archive/ijett-v70i7p214</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14445/22315381/IJETT-V70I7P214" target="_blank" >10.14445/22315381/IJETT-V70I7P214</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Potential Role of Artificial Intelligence in Breast Cancer Detection- A Review
Popis výsledku v původním jazyce
Breast cancer remains a major cause of mortality in females worldwide. Detecting breast cancer at earlier stages would make a significant difference among the global population. Artificial intelligence (AI) has made its way to concern for developing technologies and approaches for detecting cancer at earlier stages, artificial intelligence (AI) has made its way. Recent research by scientific experts has concentrated on this automated process. The major advantages of enhancing the research on this particular field involving AI in detection are due to the usage of deep learning algorithms (software) and the hardware capable of using the complex and complicated algorithms of AI. The advantages also include the accessibility of larger datasets required for AI training approaches. The identification and detection of breast cancer have been performed using mammograms, ultrasound, histopathology, magnetic resonance imaging, or a conjunction of these imaging techniques in an automated manner. Combining image-specific findings and underlying genetic, pathologic, and clinical characteristics in breast cancer is becoming increasingly valuable. Radiologists now have more diagnostic tools and image collections to study and interpret because of the introduction of innovative imaging modalities. Integrating an AI-based workflow into breast imaging allows many data streams to be combined into strong multidisciplinary applications, perhaps leading to tailored patient-specific therapy. The current article analyses the role of AI in the early detection of breast cancer. © 2022 Seventh Sense Research Group®.
Název v anglickém jazyce
Potential Role of Artificial Intelligence in Breast Cancer Detection- A Review
Popis výsledku anglicky
Breast cancer remains a major cause of mortality in females worldwide. Detecting breast cancer at earlier stages would make a significant difference among the global population. Artificial intelligence (AI) has made its way to concern for developing technologies and approaches for detecting cancer at earlier stages, artificial intelligence (AI) has made its way. Recent research by scientific experts has concentrated on this automated process. The major advantages of enhancing the research on this particular field involving AI in detection are due to the usage of deep learning algorithms (software) and the hardware capable of using the complex and complicated algorithms of AI. The advantages also include the accessibility of larger datasets required for AI training approaches. The identification and detection of breast cancer have been performed using mammograms, ultrasound, histopathology, magnetic resonance imaging, or a conjunction of these imaging techniques in an automated manner. Combining image-specific findings and underlying genetic, pathologic, and clinical characteristics in breast cancer is becoming increasingly valuable. Radiologists now have more diagnostic tools and image collections to study and interpret because of the introduction of innovative imaging modalities. Integrating an AI-based workflow into breast imaging allows many data streams to be combined into strong multidisciplinary applications, perhaps leading to tailored patient-specific therapy. The current article analyses the role of AI in the early detection of breast cancer. © 2022 Seventh Sense Research Group®.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Engineering Trends and Technology
ISSN
2349-0918
e-ISSN
2231-5381
Svazek periodika
70
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
IN - Indická republika
Počet stran výsledku
10
Strana od-do
130-139
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85135088441