In Defence of Good Old-Fashioned Artificial Intelligence Approaches in Intelligent Transportation Systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F24%3A00375788" target="_blank" >RIV/68407700:21730/24:00375788 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/ITSC57777.2023.10422348" target="_blank" >http://dx.doi.org/10.1109/ITSC57777.2023.10422348</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ITSC57777.2023.10422348" target="_blank" >10.1109/ITSC57777.2023.10422348</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
In Defence of Good Old-Fashioned Artificial Intelligence Approaches in Intelligent Transportation Systems
Popis výsledku v původním jazyce
In recent years, Artificial Intelligence (AI) has been increasingly used in traffic management and control, particularly in the smart city context. However, the vast majority of recent AI-based approaches rely on data-driven black-box models that hinder the ability to understand the behaviour and dynamics that lead to a given output. On the contrary, Good Old-Fashioned Artificial Intelligence approaches that are based on symbolic models, such as automated planning, can provide the transparency and explainability needed in realworld applications. This paper focuses on the benefits of using automated planning techniques in Intelligent Transportation Systems (ITS), with a focus on explainability. A case study is presented to demonstrate how the components of an automated planning system can support explainability, the types of explanations that can be obtained, and the way in which such explanations can be generated.
Název v anglickém jazyce
In Defence of Good Old-Fashioned Artificial Intelligence Approaches in Intelligent Transportation Systems
Popis výsledku anglicky
In recent years, Artificial Intelligence (AI) has been increasingly used in traffic management and control, particularly in the smart city context. However, the vast majority of recent AI-based approaches rely on data-driven black-box models that hinder the ability to understand the behaviour and dynamics that lead to a given output. On the contrary, Good Old-Fashioned Artificial Intelligence approaches that are based on symbolic models, such as automated planning, can provide the transparency and explainability needed in realworld applications. This paper focuses on the benefits of using automated planning techniques in Intelligent Transportation Systems (ITS), with a focus on explainability. A case study is presented to demonstrate how the components of an automated planning system can support explainability, the types of explanations that can be obtained, and the way in which such explanations can be generated.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA23-05575S" target="_blank" >GA23-05575S: Řízení dopravy v obydlených oblastech pomocí automatického plánování</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC)
ISBN
979-8-3503-9946-2
ISSN
2153-0017
e-ISSN
2153-0017
Počet stran výsledku
6
Strana od-do
4913-4918
Název nakladatele
IEEE (Institute of Electrical and Electronics Engineers)
Místo vydání
—
Místo konání akce
Bilbao
Datum konání akce
24. 9. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001178996704141