Intelligent modelling with alternative approach: Application of advanced artificial intelligence into traffic management
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19240%2F17%3AA0000066" target="_blank" >RIV/47813059:19240/17:A0000066 - isvavai.cz</a>
Výsledek na webu
<a href="http://www3.uniza.sk/komunikacie/archiv/2017/4/4_2017en.pdf" target="_blank" >http://www3.uniza.sk/komunikacie/archiv/2017/4/4_2017en.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Intelligent modelling with alternative approach: Application of advanced artificial intelligence into traffic management
Popis výsledku v původním jazyce
The currently existing transport infrastructures are failing due to many problems. This paper deals with presenting a new approach of modelling and forecasting transport processes using artificial intelligence. Firstly, the current state of forecasting transport data is presented; the traditional as well as new artificial intelligence methods, such as artificial neural networks, are discussed and described. After that, a support vector regression prediction model is briefly presented and an empirical analysis is performed. Finally, on the basis of our experiment and performed comparative analysis we state that artificial intelligence (AI) intelligent methods have potential in the transport area as they can improve the efficiency, safety, and environmental compatibility of transport systems.
Název v anglickém jazyce
Intelligent modelling with alternative approach: Application of advanced artificial intelligence into traffic management
Popis výsledku anglicky
The currently existing transport infrastructures are failing due to many problems. This paper deals with presenting a new approach of modelling and forecasting transport processes using artificial intelligence. Firstly, the current state of forecasting transport data is presented; the traditional as well as new artificial intelligence methods, such as artificial neural networks, are discussed and described. After that, a support vector regression prediction model is briefly presented and an empirical analysis is performed. Finally, on the basis of our experiment and performed comparative analysis we state that artificial intelligence (AI) intelligent methods have potential in the transport area as they can improve the efficiency, safety, and environmental compatibility of transport systems.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Komunikacie
ISSN
1335-4205
e-ISSN
—
Svazek periodika
19
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
SK - Slovenská republika
Počet stran výsledku
7
Strana od-do
36-42
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85037697379