Impact of Travel on Spread of Infection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU149965" target="_blank" >RIV/00216305:26220/23:PU149965 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-031-42689-6_8" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-42689-6_8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-42689-6_8" target="_blank" >10.1007/978-3-031-42689-6_8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Impact of Travel on Spread of Infection
Popis výsledku v původním jazyce
In this paper, we are concerned with a generalization of the classical SIR model describing the dynamics of an infectious disease. Two distinctive features of the proposed model are: (i) the split of the cohort of susceptible into two sub-cohorts, frequent travelers running higher risks of being infected and individuals who do not travel with a lower infection rate, and (ii) lack of immunity to disease with the possibility of re-infection after recovery. These modifications reflect recent experience from Covid-19 epidemics when countries were introducing quarantine measures or travel restrictions and multiple cases of repeated reinfection of individuals were reported. Numerical simulations demonstrate that the ratio between the infection rates of mobile and non-mobile susceptible significantly impacts the dynamics of the disease. Higher infection rates for a smaller sub-cohort of active travelers lead to earlier epidemics outbreaks and affect a larger proportion of individuals.
Název v anglickém jazyce
Impact of Travel on Spread of Infection
Popis výsledku anglicky
In this paper, we are concerned with a generalization of the classical SIR model describing the dynamics of an infectious disease. Two distinctive features of the proposed model are: (i) the split of the cohort of susceptible into two sub-cohorts, frequent travelers running higher risks of being infected and individuals who do not travel with a lower infection rate, and (ii) lack of immunity to disease with the possibility of re-infection after recovery. These modifications reflect recent experience from Covid-19 epidemics when countries were introducing quarantine measures or travel restrictions and multiple cases of repeated reinfection of individuals were reported. Numerical simulations demonstrate that the ratio between the infection rates of mobile and non-mobile susceptible significantly impacts the dynamics of the disease. Higher infection rates for a smaller sub-cohort of active travelers lead to earlier epidemics outbreaks and affect a larger proportion of individuals.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Computational and Mathematical Models in Biology
ISBN
978-3-031-42688-9
Počet stran výsledku
29
Strana od-do
183-211
Počet stran knihy
329
Název nakladatele
Springer Cham
Místo vydání
Cham, Switzerland
Kód UT WoS kapitoly
—