CovidStopHospital: e-Health Service for X-Ray-Based COVID-19 Classification and Radiologist-Assisted Dataset Creation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU150169" target="_blank" >RIV/00216305:26220/23:PU150169 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00098892:_____/23:10158534
Výsledek na webu
<a href="https://ieeexplore.ieee.org/abstract/document/10333292" target="_blank" >https://ieeexplore.ieee.org/abstract/document/10333292</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
CovidStopHospital: e-Health Service for X-Ray-Based COVID-19 Classification and Radiologist-Assisted Dataset Creation
Popis výsledku v původním jazyce
Image data processing using artificial intelligence (AI) algorithms has various applications, including medicine. During the SARS-CoV-2 pandemic, many successful COVID-19 classification algorithms were trained. However, to be effectively used in clinical settings, these algorithms need to be deployed in hospitals. Existing platforms for AI algorithm deployment may not be usable in hospitals that rely on proprietary information systems lacking application interfaces. This paper introduces an easily modifiable general AI-X-ray service capable of deploying AI algorithms even in hospitals using proprietary information systems lacking application interfaces. The CovidStopHospital service, based on the AI-X-ray architecture, is also presented. It is designed for COVID-19 classification and can seamlessly incorporate any classification AI algorithm; the presented solution uses DeepCovid-XR algorithm. The service also includes functionality for radiologists to label X-ray images, facilitating the creation of new datasets. CovidStopHospital underwent testing to ensure its stability and performance, with an average X-ray analysis time of 11.53 seconds and a maximum of 14.01 seconds. The tool can potentially be a valuable diagnostic support tool and is currently in experimental deployment at the University Hospital of Olomouc
Název v anglickém jazyce
CovidStopHospital: e-Health Service for X-Ray-Based COVID-19 Classification and Radiologist-Assisted Dataset Creation
Popis výsledku anglicky
Image data processing using artificial intelligence (AI) algorithms has various applications, including medicine. During the SARS-CoV-2 pandemic, many successful COVID-19 classification algorithms were trained. However, to be effectively used in clinical settings, these algorithms need to be deployed in hospitals. Existing platforms for AI algorithm deployment may not be usable in hospitals that rely on proprietary information systems lacking application interfaces. This paper introduces an easily modifiable general AI-X-ray service capable of deploying AI algorithms even in hospitals using proprietary information systems lacking application interfaces. The CovidStopHospital service, based on the AI-X-ray architecture, is also presented. It is designed for COVID-19 classification and can seamlessly incorporate any classification AI algorithm; the presented solution uses DeepCovid-XR algorithm. The service also includes functionality for radiologists to label X-ray images, facilitating the creation of new datasets. CovidStopHospital underwent testing to ensure its stability and performance, with an average X-ray analysis time of 11.53 seconds and a maximum of 14.01 seconds. The tool can potentially be a valuable diagnostic support tool and is currently in experimental deployment at the University Hospital of Olomouc
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
<a href="/cs/project/VK01010153" target="_blank" >VK01010153: Vývoj umělé inteligence pro systém multimodální nedestruktivní forenzní analýzy materiálů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
15th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT)
ISBN
979-8-3503-9328-6
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
62-67
Název nakladatele
Neuveden
Místo vydání
Ghent
Místo konání akce
Gent, Belgium
Datum konání akce
30. 10. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—