Positive supersolutions of non-autonomous quasilinear elliptic equations with mixed reaction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU150378" target="_blank" >RIV/00216305:26220/23:PU150378 - isvavai.cz</a>
Výsledek na webu
<a href="https://aif.centre-mersenne.org/articles/10.5802/aif.3576/" target="_blank" >https://aif.centre-mersenne.org/articles/10.5802/aif.3576/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5802/aif.3576" target="_blank" >10.5802/aif.3576</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Positive supersolutions of non-autonomous quasilinear elliptic equations with mixed reaction
Popis výsledku v původním jazyce
We provide a simple method for obtaining new Liouville-type theorems for positive supersolutions of the We We provide a simple method for obtaining new Liouville-type theorems for positive supersolutions of the elliptic problem - Delta(p)u+ b(x)vertical bar del u vertical bar(pq/q+1) = c(x)u(q) in Omega, where Omega is an exterior domain in R-N with N >= p > 1 and q >= p - 1. In the case q not equal p - 1, we mainly deal with potentials of the type b(x) = vertical bar x vertical bar(a), c(x) = lambda vertical bar x vertical bar(sigma), where lambda > 0 and a, sigma is an element of R. We show that positive supersolutions do not exist in some ranges of the parameters p, q, a, sigma, which turn out to be optimal. When q = p - 1, we consider the above problem with general weights b(x) >= 0, c(x) > 0 and we assume that c(x)- b(p)(x)/p(p) > 0 for large vertical bar x vertical bar, but we also allow the case lim(vertical bar x vertical bar ->infinity)[c(x)- b(p)(x)/p(p)] = 0. The weights b and c are allowed to be unbounded. We prove that if this equation has a positive supersolution, then the potentials must satisfy a related differential inequality not depending on the supersolution. We also establish sufficient conditions for the nonexistence of positive supersolutions in relationship with the values of tau := lim sup(vertical bar x vertical bar ->infinity) vertical bar x vertical bar b(x) <= infinity. A key ingredient in the proofs is a generalized Hardy-type inequality associated to the p-Laplace operator.
Název v anglickém jazyce
Positive supersolutions of non-autonomous quasilinear elliptic equations with mixed reaction
Popis výsledku anglicky
We provide a simple method for obtaining new Liouville-type theorems for positive supersolutions of the We We provide a simple method for obtaining new Liouville-type theorems for positive supersolutions of the elliptic problem - Delta(p)u+ b(x)vertical bar del u vertical bar(pq/q+1) = c(x)u(q) in Omega, where Omega is an exterior domain in R-N with N >= p > 1 and q >= p - 1. In the case q not equal p - 1, we mainly deal with potentials of the type b(x) = vertical bar x vertical bar(a), c(x) = lambda vertical bar x vertical bar(sigma), where lambda > 0 and a, sigma is an element of R. We show that positive supersolutions do not exist in some ranges of the parameters p, q, a, sigma, which turn out to be optimal. When q = p - 1, we consider the above problem with general weights b(x) >= 0, c(x) > 0 and we assume that c(x)- b(p)(x)/p(p) > 0 for large vertical bar x vertical bar, but we also allow the case lim(vertical bar x vertical bar ->infinity)[c(x)- b(p)(x)/p(p)] = 0. The weights b and c are allowed to be unbounded. We prove that if this equation has a positive supersolution, then the potentials must satisfy a related differential inequality not depending on the supersolution. We also establish sufficient conditions for the nonexistence of positive supersolutions in relationship with the values of tau := lim sup(vertical bar x vertical bar ->infinity) vertical bar x vertical bar b(x) <= infinity. A key ingredient in the proofs is a generalized Hardy-type inequality associated to the p-Laplace operator.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ANNALES DE L INSTITUT FOURIER
ISSN
1777-5310
e-ISSN
—
Svazek periodika
73
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
FR - Francouzská republika
Počet stran výsledku
24
Strana od-do
2543-2566
Kód UT WoS článku
001109332400001
EID výsledku v databázi Scopus
—