Novel criterion for the existence of solutions with positive coordinates to a system of linear delayed differential equations with multiple delays
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU151242" target="_blank" >RIV/00216305:26220/24:PU151242 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0893965924000521" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0893965924000521</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aml.2024.109032" target="_blank" >10.1016/j.aml.2024.109032</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Novel criterion for the existence of solutions with positive coordinates to a system of linear delayed differential equations with multiple delays
Popis výsledku v původním jazyce
A linear system of delayed differential equations with multiple delays x(t) = - Sigma(s)(t=1) c(i)(t)A(i)(t)x(t-tau(i)(t)), t is an element of[t(0), infinity), is considered where x is an n-dimensional column vector, t(0) is an element of R, s is a fixed integer, delays tau(i) are positive and bounded, entries of n by n matrices A(i) as well as functions c(i) are nonnegative, and the sums of columns of the matrix A(i) (t) are identical and equal to a function alpha(i)(t). It is proved that, on [t(0), infinity), the system has a solution with positive coordinates if and only if the scalar equation y(t) = - Sigma(s)(t=1) c(i)(t)A(i)(t)y(t-tau(i)(t)), t is an element of[t(0), infinity), has a positive solution. Some asymptotic properties of solutions related to both equations are also discussed. Illustrative examples are considered and some open problems formulated.
Název v anglickém jazyce
Novel criterion for the existence of solutions with positive coordinates to a system of linear delayed differential equations with multiple delays
Popis výsledku anglicky
A linear system of delayed differential equations with multiple delays x(t) = - Sigma(s)(t=1) c(i)(t)A(i)(t)x(t-tau(i)(t)), t is an element of[t(0), infinity), is considered where x is an n-dimensional column vector, t(0) is an element of R, s is a fixed integer, delays tau(i) are positive and bounded, entries of n by n matrices A(i) as well as functions c(i) are nonnegative, and the sums of columns of the matrix A(i) (t) are identical and equal to a function alpha(i)(t). It is proved that, on [t(0), infinity), the system has a solution with positive coordinates if and only if the scalar equation y(t) = - Sigma(s)(t=1) c(i)(t)A(i)(t)y(t-tau(i)(t)), t is an element of[t(0), infinity), has a positive solution. Some asymptotic properties of solutions related to both equations are also discussed. Illustrative examples are considered and some open problems formulated.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
APPLIED MATHEMATICS LETTERS
ISSN
1873-5452
e-ISSN
—
Svazek periodika
152
Číslo periodika v rámci svazku
June 2024
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
5
Strana od-do
1-5
Kód UT WoS článku
001197791100001
EID výsledku v databázi Scopus
2-s2.0-85185705410