Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

General Solutions to Linear Discrete Two-dimensional Systems with Constant Coefficients - the Case of both Eigenvalues of the Matrix of Nondelayed Terms being Zeros with the Conditions Characterizing Weakly Delayed Systems Satisfied

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU151630" target="_blank" >RIV/00216305:26220/24:PU151630 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://mitav.unob.cz/data/final%20Program%20MITAV%202024.pdf" target="_blank" >https://mitav.unob.cz/data/final%20Program%20MITAV%202024.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    General Solutions to Linear Discrete Two-dimensional Systems with Constant Coefficients - the Case of both Eigenvalues of the Matrix of Nondelayed Terms being Zeros with the Conditions Characterizing Weakly Delayed Systems Satisfied

  • Popis výsledku v původním jazyce

    Linear discrete two-dimensional systems y(n+1) = Gy(n)+My(n−r), n ≥ 0 are considered, where the 2 by 2 constant matrices G and M satisfy the conditions known for so-called weakly delayed systems. The system has a single delay represented by a positive integer r, n is an independent variable and y in an unknown two dimensional vector function defined for all n = −r,−r + 1,... . It is assumed that both eigenvalues of G equal zero and the entries of 2 by 2 matrix M satisfy the conditions characterizing weakly delayed systems. Formulas are derived for solutions of initial problems.

  • Název v anglickém jazyce

    General Solutions to Linear Discrete Two-dimensional Systems with Constant Coefficients - the Case of both Eigenvalues of the Matrix of Nondelayed Terms being Zeros with the Conditions Characterizing Weakly Delayed Systems Satisfied

  • Popis výsledku anglicky

    Linear discrete two-dimensional systems y(n+1) = Gy(n)+My(n−r), n ≥ 0 are considered, where the 2 by 2 constant matrices G and M satisfy the conditions known for so-called weakly delayed systems. The system has a single delay represented by a positive integer r, n is an independent variable and y in an unknown two dimensional vector function defined for all n = −r,−r + 1,... . It is assumed that both eigenvalues of G equal zero and the entries of 2 by 2 matrix M satisfy the conditions characterizing weakly delayed systems. Formulas are derived for solutions of initial problems.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů