General Solutions to Linear Discrete Two-dimensional Systems with Constant Coefficients - the Case of both Eigenvalues of the Matrix of Nondelayed Terms being Zeros with the Conditions Characterizing Weakly Delayed Systems Satisfied
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU151630" target="_blank" >RIV/00216305:26220/24:PU151630 - isvavai.cz</a>
Výsledek na webu
<a href="https://mitav.unob.cz/data/final%20Program%20MITAV%202024.pdf" target="_blank" >https://mitav.unob.cz/data/final%20Program%20MITAV%202024.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
General Solutions to Linear Discrete Two-dimensional Systems with Constant Coefficients - the Case of both Eigenvalues of the Matrix of Nondelayed Terms being Zeros with the Conditions Characterizing Weakly Delayed Systems Satisfied
Popis výsledku v původním jazyce
Linear discrete two-dimensional systems y(n+1) = Gy(n)+My(n−r), n ≥ 0 are considered, where the 2 by 2 constant matrices G and M satisfy the conditions known for so-called weakly delayed systems. The system has a single delay represented by a positive integer r, n is an independent variable and y in an unknown two dimensional vector function defined for all n = −r,−r + 1,... . It is assumed that both eigenvalues of G equal zero and the entries of 2 by 2 matrix M satisfy the conditions characterizing weakly delayed systems. Formulas are derived for solutions of initial problems.
Název v anglickém jazyce
General Solutions to Linear Discrete Two-dimensional Systems with Constant Coefficients - the Case of both Eigenvalues of the Matrix of Nondelayed Terms being Zeros with the Conditions Characterizing Weakly Delayed Systems Satisfied
Popis výsledku anglicky
Linear discrete two-dimensional systems y(n+1) = Gy(n)+My(n−r), n ≥ 0 are considered, where the 2 by 2 constant matrices G and M satisfy the conditions known for so-called weakly delayed systems. The system has a single delay represented by a positive integer r, n is an independent variable and y in an unknown two dimensional vector function defined for all n = −r,−r + 1,... . It is assumed that both eigenvalues of G equal zero and the entries of 2 by 2 matrix M satisfy the conditions characterizing weakly delayed systems. Formulas are derived for solutions of initial problems.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů