A Simple State-Space Model of Human Driver Applicable to Windy Conditions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU151765" target="_blank" >RIV/00216305:26220/24:PU151765 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2405896324004907" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2405896324004907</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ifacol.2024.07.401" target="_blank" >10.1016/j.ifacol.2024.07.401</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Simple State-Space Model of Human Driver Applicable to Windy Conditions
Popis výsledku v původním jazyce
The paper is concerned with the design, verification and evaluation of a car-driving test scenario for human driver assessment. The scenario implemented in Unreal Engine adds four different wind characteristics which disturb the motion of a simulated vehicle. Besides, the driver is instructed to change the driving lane at defined intervals. These forcing functions enable the identification of the human-machine loop using state-space models. The parameters characterising the human dynamics are extracted from the model of the whole loop. As opposed to rather obsolete McRuer models, this approach follows the recent trends in the modelling of human-machine systems as multiloop systems or quadratically optimal controllers. Our results suggest that the model relying on a single transfer function with 4 parameters loses prediction capabilities during more realistic scenarios, in which random disturbances, such as wind gusts, affect the vehicle. In such cases, the multiloop model with the same number of parameters is able to capture human behaviour more accurately than McRuer model.
Název v anglickém jazyce
A Simple State-Space Model of Human Driver Applicable to Windy Conditions
Popis výsledku anglicky
The paper is concerned with the design, verification and evaluation of a car-driving test scenario for human driver assessment. The scenario implemented in Unreal Engine adds four different wind characteristics which disturb the motion of a simulated vehicle. Besides, the driver is instructed to change the driving lane at defined intervals. These forcing functions enable the identification of the human-machine loop using state-space models. The parameters characterising the human dynamics are extracted from the model of the whole loop. As opposed to rather obsolete McRuer models, this approach follows the recent trends in the modelling of human-machine systems as multiloop systems or quadratically optimal controllers. Our results suggest that the model relying on a single transfer function with 4 parameters loses prediction capabilities during more realistic scenarios, in which random disturbances, such as wind gusts, affect the vehicle. In such cases, the multiloop model with the same number of parameters is able to capture human behaviour more accurately than McRuer model.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
18th IFAC Conference on Programmable Devices and Embedded Systems – PDeS 2024.
ISBN
—
ISSN
2405-8963
e-ISSN
—
Počet stran výsledku
6
Strana od-do
229-234
Název nakladatele
Elsevier
Místo vydání
neuveden
Místo konání akce
Brno
Datum konání akce
19. 6. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—