Experimenting With an Efficient Driver Behavior Dynamical Model Applicable to Simulated Lane Changing Tasks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU152090" target="_blank" >RIV/00216305:26220/24:PU152090 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10658638" target="_blank" >https://ieeexplore.ieee.org/document/10658638</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2024.3451622" target="_blank" >10.1109/ACCESS.2024.3451622</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Experimenting With an Efficient Driver Behavior Dynamical Model Applicable to Simulated Lane Changing Tasks
Popis výsledku v původním jazyce
We test an approach to modelling the car driver behaviour during simulated lane changing tasks, aiming to obtain a sufficiently precise model in the simplest possible form, namely, with a small number of parameters. Various applications of such models are available in the literature. Based on a recent review of the research to date, the cybernetic single-loop transfer function models employing McRuer’s theory are applied. The purpose of the presented method is to evaluate the optimal structure of the transfer function via cross-validation as a technique known from machine learning. The experiments utilize a driving simulator with in-house developed software; this configuration facilitates acquiring the data at the desired sampling frequency and in a manner that ensures the repeatability of the test process scenarios. Using the cross-validation results, we evaluate the second-order model with a derivative state and a reaction delay component as an optimal structure for approximating the measured data, which originated from a set of measurements on 92 active drivers. Even though more complex driving tasks could require high-order models, driver’s control action during our specific experiment is described through only four parameters. The parameters are jointly determined by the current driver’s mental state and the testing conditions defined in our scenario. Since the parameters are related to his/her dynamical behaviour, they allow easier mutual comparison of the drivers than complex models with many parameters. The results are verified via establishing a relationship to the multi-loop model presented in the recent literature. The larger dataset enables evaluating the confidence intervals of the drivers’ parameters which is inconvenient with 4 to 10 drivers commonly presented in the relevant sources.
Název v anglickém jazyce
Experimenting With an Efficient Driver Behavior Dynamical Model Applicable to Simulated Lane Changing Tasks
Popis výsledku anglicky
We test an approach to modelling the car driver behaviour during simulated lane changing tasks, aiming to obtain a sufficiently precise model in the simplest possible form, namely, with a small number of parameters. Various applications of such models are available in the literature. Based on a recent review of the research to date, the cybernetic single-loop transfer function models employing McRuer’s theory are applied. The purpose of the presented method is to evaluate the optimal structure of the transfer function via cross-validation as a technique known from machine learning. The experiments utilize a driving simulator with in-house developed software; this configuration facilitates acquiring the data at the desired sampling frequency and in a manner that ensures the repeatability of the test process scenarios. Using the cross-validation results, we evaluate the second-order model with a derivative state and a reaction delay component as an optimal structure for approximating the measured data, which originated from a set of measurements on 92 active drivers. Even though more complex driving tasks could require high-order models, driver’s control action during our specific experiment is described through only four parameters. The parameters are jointly determined by the current driver’s mental state and the testing conditions defined in our scenario. Since the parameters are related to his/her dynamical behaviour, they allow easier mutual comparison of the drivers than complex models with many parameters. The results are verified via establishing a relationship to the multi-loop model presented in the recent literature. The larger dataset enables evaluating the confidence intervals of the drivers’ parameters which is inconvenient with 4 to 10 drivers commonly presented in the relevant sources.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/TN02000067" target="_blank" >TN02000067: Nové směry v elektronice pro průmysl 4.0 a medicínu 4.0</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
Neuvedeno
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
„122183“-„122198 “
Kód UT WoS článku
001311194600001
EID výsledku v databázi Scopus
2-s2.0-85203410311