Comparison of Multiple Feature Selection Techniques for Machine Learning-Based Detection of IoT Attacks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU151811" target="_blank" >RIV/00216305:26220/24:PU151811 - isvavai.cz</a>
Výsledek na webu
<a href="https://dl.acm.org/doi/10.1145/3664476.3670440" target="_blank" >https://dl.acm.org/doi/10.1145/3664476.3670440</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3664476.3670440" target="_blank" >10.1145/3664476.3670440</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparison of Multiple Feature Selection Techniques for Machine Learning-Based Detection of IoT Attacks
Popis výsledku v původním jazyce
The Internet of Things (IoT) has become increasingly practical in applications such as smart homes, autonomous vehicles, and environmental monitoring. However, this rapid expansion has led to significant cybersecurity threats. Detecting these threats is critical, and while machine learning techniques are valuable, they struggle with high-dimensional data. Feature selection helps by reducing computational costs while maintaining model generalization. Selecting the most effective feature selection method is a crucial task. This research addresses this gap by testing five feature selection methods: Random Forest (RF), Recursive Feature Elimination (RFE), Logistic Regression (LR), XGBoost Regression (XGBoost), and Information Gain (IG) using the CIC-IoT 2023 dataset. It evaluates these methods when being used with five machine learning models: Decision Tree (DT), Random Forest (RF), k-Nearest Neighbors (k-NN), Gradient Boosting (GB), and Multi-layer Perceptron (MLP) using metrics like accuracy, precision, recall, and F1-score across three datasets. The results show that RFE, especially with the RF model, achieves the highest accuracy (99.57%) with 30 features. RF is the most stable, with accuracy from 83% to 99.56%. Additionally, the 5-feature scheme is best for implementing IDS on resource-limited IoT devices, with RFE paired with the k-NN model being the optimal combination.
Název v anglickém jazyce
Comparison of Multiple Feature Selection Techniques for Machine Learning-Based Detection of IoT Attacks
Popis výsledku anglicky
The Internet of Things (IoT) has become increasingly practical in applications such as smart homes, autonomous vehicles, and environmental monitoring. However, this rapid expansion has led to significant cybersecurity threats. Detecting these threats is critical, and while machine learning techniques are valuable, they struggle with high-dimensional data. Feature selection helps by reducing computational costs while maintaining model generalization. Selecting the most effective feature selection method is a crucial task. This research addresses this gap by testing five feature selection methods: Random Forest (RF), Recursive Feature Elimination (RFE), Logistic Regression (LR), XGBoost Regression (XGBoost), and Information Gain (IG) using the CIC-IoT 2023 dataset. It evaluates these methods when being used with five machine learning models: Decision Tree (DT), Random Forest (RF), k-Nearest Neighbors (k-NN), Gradient Boosting (GB), and Multi-layer Perceptron (MLP) using metrics like accuracy, precision, recall, and F1-score across three datasets. The results show that RFE, especially with the RF model, achieves the highest accuracy (99.57%) with 30 features. RF is the most stable, with accuracy from 83% to 99.56%. Additionally, the 5-feature scheme is best for implementing IDS on resource-limited IoT devices, with RFE paired with the k-NN model being the optimal combination.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
<a href="/cs/project/VK01030019" target="_blank" >VK01030019: Interaktivní kontrolní seznamy pro efektivní testování kybernetické bezpečnosti</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ARES '24: Proceedings of the 19th International Conference on Availability, Reliability and Security
ISBN
979-8-4007-1718-5
ISSN
—
e-ISSN
—
Počet stran výsledku
10
Strana od-do
1-10
Název nakladatele
Association for Computing Machinery
Místo vydání
New York, NY, USA
Místo konání akce
Vídeň
Datum konání akce
30. 7. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—