Interpolation-Based Densification of Sparse Measurement Datasets for 5G+ Systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU151829" target="_blank" >RIV/00216305:26220/24:PU151829 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10605926" target="_blank" >https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10605926</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TSP63128.2024.10605926" target="_blank" >10.1109/TSP63128.2024.10605926</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Interpolation-Based Densification of Sparse Measurement Datasets for 5G+ Systems
Popis výsledku v původním jazyce
The process of obtaining dense datasets from heterogeneous cellular networks is a difficult task that requires extensive measurement campaigns, considerable time, and financial resources. Therefore, we propose an interpolation-based approach to densify sparse datasets acquired from a limited number of measurements. We demonstrate that the proposed approach can accurately model the signal levels of the serving base station (BS) and predict the coverage by neighboring cells. With the best performing linear and Kriging interpolation algorithms, we achieved values of mean absolute error under 3 dB. Specifically, both methods achieved a prediction error of less than 5 dB for more than 80 % of the measurement points. The prediction accuracy was nearly constant over the entire range of separation distances between the BSs and end devices. Owing to the minimal need for parameterization of the input dataset, the proposed solution is significantly less computationally demanding than machine learning (ML)-based approaches, and does not require training-validation cycles.
Název v anglickém jazyce
Interpolation-Based Densification of Sparse Measurement Datasets for 5G+ Systems
Popis výsledku anglicky
The process of obtaining dense datasets from heterogeneous cellular networks is a difficult task that requires extensive measurement campaigns, considerable time, and financial resources. Therefore, we propose an interpolation-based approach to densify sparse datasets acquired from a limited number of measurements. We demonstrate that the proposed approach can accurately model the signal levels of the serving base station (BS) and predict the coverage by neighboring cells. With the best performing linear and Kriging interpolation algorithms, we achieved values of mean absolute error under 3 dB. Specifically, both methods achieved a prediction error of less than 5 dB for more than 80 % of the measurement points. The prediction accuracy was nearly constant over the entire range of separation distances between the BSs and end devices. Owing to the minimal need for parameterization of the input dataset, the proposed solution is significantly less computationally demanding than machine learning (ML)-based approaches, and does not require training-validation cycles.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2024 47th International Conference on Telecommunications and Signal Processing (TSP)
ISBN
979-8-3503-6559-7
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
264-269
Název nakladatele
Institute of Electrical and Electronics Engineers Inc.
Místo vydání
Online
Místo konání akce
Prague
Datum konání akce
10. 7. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—