Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Characterization and optimization of a biomaterial ink aided by machine learning-assisted parameter suggestion

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU151830" target="_blank" >RIV/00216305:26220/24:PU151830 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S2352492824017586" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2352492824017586</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.mtcomm.2024.109777" target="_blank" >10.1016/j.mtcomm.2024.109777</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Characterization and optimization of a biomaterial ink aided by machine learning-assisted parameter suggestion

  • Popis výsledku v původním jazyce

    Bio-inks and biomaterial inks are crucial to the success of 3D bioprinting, as they form the foundation of almost every 3D bio-printed structure. Despite the use of various biomaterial inks with potential biomedical applications in 3D printing, developing printable biomaterial inks for extrusion-based 3D bioprinting remains a major challenge in additive manufacturing. To be effective, the inks must possess suitable mechanical properties, high biocompatibility, and the ability to print precisely. In this study, machine learning (ML) was employed to develop a chitosan-gelatin-agarose biomaterial ink. The ink's printability, rheological properties, hydrophilicity, degradability, and biological response were evaluated after an optimization process. The optimized ink exhibited adequate viscosity for reliable printing, and 3D structures were created to assess printability and shape integrity. Bone marrow mesenchymal stem/stromal cells (BMSCs) were cultured on the ink's surface, and cell adhesion, growth, and morphology were assessed. Results showed favorable cell morphology, and cell viability within the optimized ink. The ink consisting of 27 % agarose, 53 % chitosan, and 20 % gelatin (ACG), may be a suitable biomaterial for fabricating 3D complex tissue constructs.

  • Název v anglickém jazyce

    Characterization and optimization of a biomaterial ink aided by machine learning-assisted parameter suggestion

  • Popis výsledku anglicky

    Bio-inks and biomaterial inks are crucial to the success of 3D bioprinting, as they form the foundation of almost every 3D bio-printed structure. Despite the use of various biomaterial inks with potential biomedical applications in 3D printing, developing printable biomaterial inks for extrusion-based 3D bioprinting remains a major challenge in additive manufacturing. To be effective, the inks must possess suitable mechanical properties, high biocompatibility, and the ability to print precisely. In this study, machine learning (ML) was employed to develop a chitosan-gelatin-agarose biomaterial ink. The ink's printability, rheological properties, hydrophilicity, degradability, and biological response were evaluated after an optimization process. The optimized ink exhibited adequate viscosity for reliable printing, and 3D structures were created to assess printability and shape integrity. Bone marrow mesenchymal stem/stromal cells (BMSCs) were cultured on the ink's surface, and cell adhesion, growth, and morphology were assessed. Results showed favorable cell morphology, and cell viability within the optimized ink. The ink consisting of 27 % agarose, 53 % chitosan, and 20 % gelatin (ACG), may be a suitable biomaterial for fabricating 3D complex tissue constructs.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    30404 - Biomaterials (as related to medical implants, devices, sensors)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Materials Today Communications

  • ISSN

    2352-4928

  • e-ISSN

  • Svazek periodika

    40

  • Číslo periodika v rámci svazku

    August 2024

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    12

  • Strana od-do

    1-12

  • Kód UT WoS článku

    001326033100001

  • EID výsledku v databázi Scopus

    2-s2.0-85197803419