Deployment of deep learning-based anomaly detection systems: challenges and solutions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU152035" target="_blank" >RIV/00216305:26220/24:PU152035 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2024_sbornik_2.pdf" target="_blank" >https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2024_sbornik_2.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.13164/eeict.2024.207" target="_blank" >10.13164/eeict.2024.207</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deployment of deep learning-based anomaly detection systems: challenges and solutions
Popis výsledku v původním jazyce
Visual anomaly detection systems play an important role in various domains, including surveillance, industrial quality control, and medical imaging. However, the deployment of such systems presents significant challenges due to a wide range of possible scene setups with varying number of devices and high computational requirements of deep learning algorithms. This research paper investigates the challenges encountered during the deployment of visual anomaly detection systems for industrial applications and proposes solutions to address them effectively. We present a model use case scenario from real-world manufacturing quality control and propose an efficient distributed system for deployment of the defect detection methods in manufacturing facilities. The proposed solution aims to provide a general framework for deploying visual defect detection algorithms base on deep neural networks and their high computational requirements. Additionally, the paper addresses challenges related the whole process of automated quality control, which can be performed with varying number of camera devices and it mostly requires interaction with other factory services or workers themselves. We believe the presented framework can contribute to more widespread use of deep learning-based defect detection systems, which may provide valuable feedback for further research and development.
Název v anglickém jazyce
Deployment of deep learning-based anomaly detection systems: challenges and solutions
Popis výsledku anglicky
Visual anomaly detection systems play an important role in various domains, including surveillance, industrial quality control, and medical imaging. However, the deployment of such systems presents significant challenges due to a wide range of possible scene setups with varying number of devices and high computational requirements of deep learning algorithms. This research paper investigates the challenges encountered during the deployment of visual anomaly detection systems for industrial applications and proposes solutions to address them effectively. We present a model use case scenario from real-world manufacturing quality control and propose an efficient distributed system for deployment of the defect detection methods in manufacturing facilities. The proposed solution aims to provide a general framework for deploying visual defect detection algorithms base on deep neural networks and their high computational requirements. Additionally, the paper addresses challenges related the whole process of automated quality control, which can be performed with varying number of camera devices and it mostly requires interaction with other factory services or workers themselves. We believe the presented framework can contribute to more widespread use of deep learning-based defect detection systems, which may provide valuable feedback for further research and development.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings II of the 30th Student EEICT 2024: Selected Papers
ISBN
978-80-214-6230-4
ISSN
2788-1334
e-ISSN
—
Počet stran výsledku
5
Strana od-do
207-211
Název nakladatele
Brno University of Technology, Faculty of Electronic Engineering and Communication
Místo vydání
Brno
Místo konání akce
Brno
Datum konání akce
23. 4. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—