Anomaly detection in the CERN cloud infrastructure
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F21%3A00604044" target="_blank" >RIV/61389005:_____/21:00604044 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1051/epjconf/202125102011" target="_blank" >https://doi.org/10.1051/epjconf/202125102011</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/epjconf/202125102011" target="_blank" >10.1051/epjconf/202125102011</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Anomaly detection in the CERN cloud infrastructure
Popis výsledku v původním jazyce
Anomaly detection in the CERN OpenStack cloud is a challenging task due to the large scale of the computing infrastructure and, consequently, the large volume of monitoring data to analyse. The current solution to spot anomalous servers in the cloud infrastructure relies on a threshold-based alarming system carefully set by the system managers on the performance metrics of each infrastructure’s component. This contribution explores fully automated, unsupervised machine learning solutions in the anomaly detection field for time series metrics, by adapting both traditional and deep learning approaches. The paper describes a novel end-to-end data analytics pipeline implemented to digest the large amount of monitoring data and to expose anomalies to the system managers. The pipeline relies solely on open-source tools and frameworks, such as Spark, Apache Airflow, Kubernetes, Grafana, Elasticsearch. In addition, an approach to build annotated datasets from the CERN cloud monitoring data is reported. Finally, a preliminary performance of a number of anomaly detection algorithms is evaluated by using the aforementioned annotated datasets.
Název v anglickém jazyce
Anomaly detection in the CERN cloud infrastructure
Popis výsledku anglicky
Anomaly detection in the CERN OpenStack cloud is a challenging task due to the large scale of the computing infrastructure and, consequently, the large volume of monitoring data to analyse. The current solution to spot anomalous servers in the cloud infrastructure relies on a threshold-based alarming system carefully set by the system managers on the performance metrics of each infrastructure’s component. This contribution explores fully automated, unsupervised machine learning solutions in the anomaly detection field for time series metrics, by adapting both traditional and deep learning approaches. The paper describes a novel end-to-end data analytics pipeline implemented to digest the large amount of monitoring data and to expose anomalies to the system managers. The pipeline relies solely on open-source tools and frameworks, such as Spark, Apache Airflow, Kubernetes, Grafana, Elasticsearch. In addition, an approach to build annotated datasets from the CERN cloud monitoring data is reported. Finally, a preliminary performance of a number of anomaly detection algorithms is evaluated by using the aforementioned annotated datasets.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
EPJ Web of Conferences
ISBN
—
ISSN
2100-014X
e-ISSN
2100-014X
Počet stran výsledku
10
Strana od-do
02011
Název nakladatele
EDP Sciences
Místo vydání
Les Ulis
Místo konání akce
Virtual Event
Datum konání akce
17. 5. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001329391600019