SEMICLASSICAL STATES FOR THE PSEUDO-RELATIVISTIC SCHRODINGER EQUATION WITH COMPETING POTENTIALS
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F25%3APU156152" target="_blank" >RIV/00216305:26220/25:PU156152 - isvavai.cz</a>
Výsledek na webu
<a href="https://dx.doi.org/10.4310/CMS.241217220205" target="_blank" >https://dx.doi.org/10.4310/CMS.241217220205</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4310/CMS.241217220205" target="_blank" >10.4310/CMS.241217220205</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
SEMICLASSICAL STATES FOR THE PSEUDO-RELATIVISTIC SCHRODINGER EQUATION WITH COMPETING POTENTIALS
Popis výsledku v původním jazyce
n this paper, we establish concentration and multiplicity properties of positive ground state solutions to the following perturbed pseudo-relativistic Schrödinger equation with competing potentials where N >2s, ϵ is a small positive parameter, and (−Δ+m2)s is the pseudo-relativistic Schrödinger operator with s∈(0,1) and mass m>0. We assume that the potentials V, K and the nonlinearity f are continuous but are not necessarily of class C1. Under natural hypotheses, combining the extension method, Nehari analysis and the Ljusternik-Schnirelmann category theory, we first study the existence and concentration phenomena of positive solutions for ϵ>0 sufficiently small, as well as multiplicity properties depending on the topology of the set where V attains its global minimum and K attains its global maximum. Moreover, we establish the asymptotic convergence and the exponential decay of positive solutions. In the final part of this paper, we provide a sufficient condition for the non-existence of ground state solutions.
Název v anglickém jazyce
SEMICLASSICAL STATES FOR THE PSEUDO-RELATIVISTIC SCHRODINGER EQUATION WITH COMPETING POTENTIALS
Popis výsledku anglicky
n this paper, we establish concentration and multiplicity properties of positive ground state solutions to the following perturbed pseudo-relativistic Schrödinger equation with competing potentials where N >2s, ϵ is a small positive parameter, and (−Δ+m2)s is the pseudo-relativistic Schrödinger operator with s∈(0,1) and mass m>0. We assume that the potentials V, K and the nonlinearity f are continuous but are not necessarily of class C1. Under natural hypotheses, combining the extension method, Nehari analysis and the Ljusternik-Schnirelmann category theory, we first study the existence and concentration phenomena of positive solutions for ϵ>0 sufficiently small, as well as multiplicity properties depending on the topology of the set where V attains its global minimum and K attains its global maximum. Moreover, we establish the asymptotic convergence and the exponential decay of positive solutions. In the final part of this paper, we provide a sufficient condition for the non-existence of ground state solutions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2025
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Communications in Mathematical Sciences
ISSN
1539-6746
e-ISSN
—
Svazek periodika
23
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
43
Strana od-do
465-507
Kód UT WoS článku
001434061200006
EID výsledku v databázi Scopus
2-s2.0-85213986040