Více slovní aritmetika v simulaci dynamických systémů
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F08%3APU76695" target="_blank" >RIV/00216305:26230/08:PU76695 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multiple Arithmetic in Dynamic System Simulation
Popis výsledku v původním jazyce
A very interesting and promising numerical method of solving systems of ordinary differential equations based on Taylor series has appeared. The potential of the Taylor series has been exposed by many practical experiments and a way of detection and solution of large systems of ordinary differential equations has been found. Generally speaking, a stiff system contains several components, some of them are heavily suppressed while the rest remain almost unchanged. This feature forces the used method to choose an extremely small integration step and the progress of the computation may become very slow. There are many (implicit) methods for solving stiff systems of ODE's, from the most simple such as implicit Euler method to more sophisticated (implicit Runge-Kutta methods) and finally the general linear methods. Usually a quite complicated auxiliary system of equations has to be solved in each step. These facts lead to immense amount of work to be done in each step of the computation. The
Název v anglickém jazyce
Multiple Arithmetic in Dynamic System Simulation
Popis výsledku anglicky
A very interesting and promising numerical method of solving systems of ordinary differential equations based on Taylor series has appeared. The potential of the Taylor series has been exposed by many practical experiments and a way of detection and solution of large systems of ordinary differential equations has been found. Generally speaking, a stiff system contains several components, some of them are heavily suppressed while the rest remain almost unchanged. This feature forces the used method to choose an extremely small integration step and the progress of the computation may become very slow. There are many (implicit) methods for solving stiff systems of ODE's, from the most simple such as implicit Euler method to more sophisticated (implicit Runge-Kutta methods) and finally the general linear methods. Usually a quite complicated auxiliary system of equations has to be solved in each step. These facts lead to immense amount of work to be done in each step of the computation. The
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2008
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings UKSim 10th International Conference EUROSIM/UKSim2008
ISBN
0-7695-3114-8
ISSN
—
e-ISSN
—
Počet stran výsledku
2
Strana od-do
—
Název nakladatele
IEEE Computer Society
Místo vydání
Cambridge
Místo konání akce
Cambridge
Datum konání akce
1. 4. 2008
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—