Stiff Systems Analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F12%3APU101875" target="_blank" >RIV/00216305:26230/12:PU101875 - isvavai.cz</a>
Výsledek na webu
<a href="http://acmbulletin.fiit.stuba.sk/vol4num3/vol4num3.pdf" target="_blank" >http://acmbulletin.fiit.stuba.sk/vol4num3/vol4num3.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Stiff Systems Analysis
Popis výsledku v původním jazyce
The paper deals with stiff systems of differential equations. To solve this sort of system numerically is a diffult task. In spite of the fact that we come across stiff systems quite often in the common practice, a very interesting and promissing numerical method of solving systems of ordinary differential equations (ODE) based on Taylor series has appeared. The question was how to harness the said "Modern Taylor Series Method" (MTSM) for solving of stiff systems. The potential of the Taylor series hasbeen exposed by many practical experiments and a way of detection and explicit solution of large systems of ODE has been found. Detailed analysis of stability and convergence of explicit and implicit Taylor series is presented and a new algorithm using implicit Taylor series based on recurrent calculation of Taylor series terms and Newton iteration method (ITMRN) is described. The new method reducing stiffness in system based on finding new equivalent system of ODE "without stiffness" is
Název v anglickém jazyce
Stiff Systems Analysis
Popis výsledku anglicky
The paper deals with stiff systems of differential equations. To solve this sort of system numerically is a diffult task. In spite of the fact that we come across stiff systems quite often in the common practice, a very interesting and promissing numerical method of solving systems of ordinary differential equations (ODE) based on Taylor series has appeared. The question was how to harness the said "Modern Taylor Series Method" (MTSM) for solving of stiff systems. The potential of the Taylor series hasbeen exposed by many practical experiments and a way of detection and explicit solution of large systems of ODE has been found. Detailed analysis of stability and convergence of explicit and implicit Taylor series is presented and a new algorithm using implicit Taylor series based on recurrent calculation of Taylor series terms and Newton iteration method (ITMRN) is described. The new method reducing stiffness in system based on finding new equivalent system of ODE "without stiffness" is
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: Centrum excelence IT4Innovations</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Information Sciences and Technologies Bulletin of the ACM Slovakia
ISSN
1338-1237
e-ISSN
—
Svazek periodika
4
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
SK - Slovenská republika
Počet stran výsledku
11
Strana od-do
1-11
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—