Advanced Stiff Systems Detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F12%3APU98177" target="_blank" >RIV/00216305:26230/12:PU98177 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Advanced Stiff Systems Detection
Popis výsledku v původním jazyce
The paper deals with stiff systems of differential equations. To solve this sort of system numerically is a difficult task. There are many (implicit) methods for solving stiff systems of ordinary differential equations (ODE's), from the most simple suchas implicit Euler method to more sophisticated (implicit Runge-Kutta methods) and finally the general linear methods. The mathematical formulation of the methods often looks clear, however the implicit nature of those methods implies several implementation problems. Usually a quite complicated auxiliary system of equations has to be solved in each step. These facts lead to immense amount of work to be done in each step of the computation. These are the reasons why one has to think twice before using thestiff solver and to decide between the stiff and non-stiff solver. On the other hand a very interesting and promising numerical method of solving systems of ordinary differential equations based on Taylor series has appeared. The potenti
Název v anglickém jazyce
Advanced Stiff Systems Detection
Popis výsledku anglicky
The paper deals with stiff systems of differential equations. To solve this sort of system numerically is a difficult task. There are many (implicit) methods for solving stiff systems of ordinary differential equations (ODE's), from the most simple suchas implicit Euler method to more sophisticated (implicit Runge-Kutta methods) and finally the general linear methods. The mathematical formulation of the methods often looks clear, however the implicit nature of those methods implies several implementation problems. Usually a quite complicated auxiliary system of equations has to be solved in each step. These facts lead to immense amount of work to be done in each step of the computation. These are the reasons why one has to think twice before using thestiff solver and to decide between the stiff and non-stiff solver. On the other hand a very interesting and promising numerical method of solving systems of ordinary differential equations based on Taylor series has appeared. The potenti
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: Centrum excelence IT4Innovations</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Acta Electrotechnica et Informatica
ISSN
1335-8243
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
SK - Slovenská republika
Počet stran výsledku
6
Strana od-do
66-71
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—