Can the performance of GPGPU really beat CPU in evolutionary design task?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F08%3APU78069" target="_blank" >RIV/00216305:26230/08:PU78069 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Can the performance of GPGPU really beat CPU in evolutionary design task?
Popis výsledku v původním jazyce
With the appearance of modern general purpose graphical processor units (GPU), a powerful and cheap architecture has entered the field of scientific computation. This highly parallel architecture, formerly designed for floating point graphical operationacceleration, is now being used for the acceleration of<br>various algorithms. <br><br>During the past few years, various papers dealing with the utilization of GPUs in general purpose computing have been published. Even evolutionary algorithms have beenaccelerated [1, 3], among them genetic programming and its variants. In order to achieve maximal performance of genome evaluation, various approaches of candidate solution evaluation have been proposed. The genome can be evaluated as a program which canbe directly downloaded into the GPU [1] or interpreted by using an interpreter program running on the GPU [2]. Due to the architectural limitations, the second method appears to be more promising in comparison with the previous one.<br><
Název v anglickém jazyce
Can the performance of GPGPU really beat CPU in evolutionary design task?
Popis výsledku anglicky
With the appearance of modern general purpose graphical processor units (GPU), a powerful and cheap architecture has entered the field of scientific computation. This highly parallel architecture, formerly designed for floating point graphical operationacceleration, is now being used for the acceleration of<br>various algorithms. <br><br>During the past few years, various papers dealing with the utilization of GPUs in general purpose computing have been published. Even evolutionary algorithms have beenaccelerated [1, 3], among them genetic programming and its variants. In order to achieve maximal performance of genome evaluation, various approaches of candidate solution evaluation have been proposed. The genome can be evaluated as a program which canbe directly downloaded into the GPU [1] or interpreted by using an interpreter program running on the GPU [2]. Due to the architectural limitations, the second method appears to be more promising in comparison with the previous one.<br><
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2008
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
4th Doctoral Workshop on Mathematical and Engineering Methods in Computer Science
ISBN
978-80-7355-082-0
ISSN
—
e-ISSN
—
Počet stran výsledku
1
Strana od-do
—
Název nakladatele
Masaryk University
Místo vydání
Znojmo
Místo konání akce
Znojmo
Datum konání akce
14. 11. 2008
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—