Non-Negative Tensor Factorization Accelerated Using GPGPU
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F11%3APU89632" target="_blank" >RIV/00216305:26230/11:PU89632 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Non-Negative Tensor Factorization Accelerated Using GPGPU
Popis výsledku v původním jazyce
This article presents an optimized algorithm for Non-Negative Tensor Factorization (NTF), implemented in the CUDA (Compute Uniform Device Architecture) framework, that runs on contemporary graphics processors and exploits their massive parallelism. The NTF implementation is primarily targeted for analysis of high-dimensional spectral images, including dimensionality reduction, feature extraction, and other tasks related to spectral imaging; however, the algorithm and its implementation are not limited to spectral imaging. The speed-ups measured on real spectral images are around 60-100x compared to a traditional C implementation compiled with an optimizing compiler. Since common problems in the field of spectral imaging may take hours on a state-of-the-art CPU, the speed-up achieved using a graphics card is attractive. The implementation is publicly available in the form of a dynamically linked library, including an interface to MATLAB, and thus may be of help to researchers and eng
Název v anglickém jazyce
Non-Negative Tensor Factorization Accelerated Using GPGPU
Popis výsledku anglicky
This article presents an optimized algorithm for Non-Negative Tensor Factorization (NTF), implemented in the CUDA (Compute Uniform Device Architecture) framework, that runs on contemporary graphics processors and exploits their massive parallelism. The NTF implementation is primarily targeted for analysis of high-dimensional spectral images, including dimensionality reduction, feature extraction, and other tasks related to spectral imaging; however, the algorithm and its implementation are not limited to spectral imaging. The speed-ups measured on real spectral images are around 60-100x compared to a traditional C implementation compiled with an optimizing compiler. Since common problems in the field of spectral imaging may take hours on a state-of-the-art CPU, the speed-up achieved using a graphics card is attractive. The implementation is publicly available in the form of a dynamically linked library, including an interface to MATLAB, and thus may be of help to researchers and eng
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/LC06008" target="_blank" >LC06008: Centrum počítačové grafiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
ISSN
1045-9219
e-ISSN
—
Svazek periodika
2011
Číslo periodika v rámci svazku
1111
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
7
Strana od-do
0-0
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—