Genetic Algorithm using Theory of Chaos
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F15%3APU116947" target="_blank" >RIV/00216305:26230/15:PU116947 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.fit.vutbr.cz/research/pubs/all.php?id=10781" target="_blank" >http://www.fit.vutbr.cz/research/pubs/all.php?id=10781</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.procs.2015.05.248" target="_blank" >10.1016/j.procs.2015.05.248</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Genetic Algorithm using Theory of Chaos
Popis výsledku v původním jazyce
This paper is focused on genetic algorithm with chaotic crossover operator. We have performed some experiments to study possible use of chaos in simulated evolution. A novel genetic algorithm with chaotic optimization operation is proposed to optimization of multimodal functions. As the basis of a new crossing operator a simple equation involving chaos is used, concrete the logistic function. The logistic function is a simple one-parameter function of the second order that shows a chaotic behavior for some values of the parameter. Generally, solution of the logistic function has three areas of its behavior: convergent, periodic and chaotic. We have supposed that the convergent behavior leads to exploitation and the chaotic behavior aids to exploration. The periodic behavior is probably neutral and thus it is a negligible one. Results of our experiments conrm these expectations. A proposed genetic algorithm with chaotic crossover operator leads to a more ecient computation in comparison with the traditional genetic algorithm.
Název v anglickém jazyce
Genetic Algorithm using Theory of Chaos
Popis výsledku anglicky
This paper is focused on genetic algorithm with chaotic crossover operator. We have performed some experiments to study possible use of chaos in simulated evolution. A novel genetic algorithm with chaotic optimization operation is proposed to optimization of multimodal functions. As the basis of a new crossing operator a simple equation involving chaos is used, concrete the logistic function. The logistic function is a simple one-parameter function of the second order that shows a chaotic behavior for some values of the parameter. Generally, solution of the logistic function has three areas of its behavior: convergent, periodic and chaotic. We have supposed that the convergent behavior leads to exploitation and the chaotic behavior aids to exploration. The periodic behavior is probably neutral and thus it is a negligible one. Results of our experiments conrm these expectations. A proposed genetic algorithm with chaotic crossover operator leads to a more ecient computation in comparison with the traditional genetic algorithm.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: Centrum excelence IT4Innovations</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Procedia Computer Science
ISSN
1877-0509
e-ISSN
—
Svazek periodika
2015
Číslo periodika v rámci svazku
51
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
10
Strana od-do
316-325
Kód UT WoS článku
000373939100032
EID výsledku v databázi Scopus
2-s2.0-84939209113