Effectiveness of Approaches for Rail Candidates Detection and Verification of the SVM
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F16%3APU121636" target="_blank" >RIV/00216305:26230/16:PU121636 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.ictic.sk/archive/?vid=1&aid=2&kid=50501-285" target="_blank" >http://www.ictic.sk/archive/?vid=1&aid=2&kid=50501-285</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.18638/ictic.2016.5.1" target="_blank" >10.18638/ictic.2016.5.1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Effectiveness of Approaches for Rail Candidates Detection and Verification of the SVM
Popis výsledku v původním jazyce
Rail candidates detection is the primary task in railway recognition systems based on recognition in images taken from the camera mounted on the board of the locomotive. In order to reduce the classifier complexity, effective and responsible rail candidates generation plays an important role without placing big decision responsibility on a further classifier stage. There are two basic options. Due to the rich complex environment along the track, pixel-per-pixel methods are often omitted. The second option involving a thorough investigation around a pixel is preferred. In this paper, we present comparison between two different approaches to rail candidates detection, each representing one of the basic groups, furthermore consequences in rail hypotheses generation. We introduce the finding that using the SVM is more efficient than the method based on pixel-per-pixel.
Název v anglickém jazyce
Effectiveness of Approaches for Rail Candidates Detection and Verification of the SVM
Popis výsledku anglicky
Rail candidates detection is the primary task in railway recognition systems based on recognition in images taken from the camera mounted on the board of the locomotive. In order to reduce the classifier complexity, effective and responsible rail candidates generation plays an important role without placing big decision responsibility on a further classifier stage. There are two basic options. Due to the rich complex environment along the track, pixel-per-pixel methods are often omitted. The second option involving a thorough investigation around a pixel is preferred. In this paper, we present comparison between two different approaches to rail candidates detection, each representing one of the basic groups, furthermore consequences in rail hypotheses generation. We introduce the finding that using the SVM is more efficient than the method based on pixel-per-pixel.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: Centrum excelence IT4Innovations</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ICTIC - Proceedings in Conference of Informatics and Management Sciences
ISBN
978-80-554-1196-5
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
152-156
Název nakladatele
University of Žilina
Místo vydání
Žilina
Místo konání akce
Žilina
Datum konání akce
21. 3. 2016
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—