Relation-induced connectedness in the digital plane
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F18%3APU126011" target="_blank" >RIV/00216305:26230/18:PU126011 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.fit.vutbr.cz/research/pubs/all.php?id=11754" target="_blank" >http://www.fit.vutbr.cz/research/pubs/all.php?id=11754</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00010-017-0508-5" target="_blank" >10.1007/s00010-017-0508-5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Relation-induced connectedness in the digital plane
Popis výsledku v původním jazyce
We introduce and discuss a connectedness induced by n-ary relations (n > 1 an integer) on their underlying sets. In particular, we focus on certain n-ary relations with the induced connectedness allowing for a definition of digital Jordan curves. For every integer n > 1, we introduce one such n-ary relation on the digital plane Z2 and prove a digital analogue of the Jordan curve theorem for the induced connectedness. It follows that these n-ary relations may be used as convenient structures on the digital plane for the study of geometric properties of digital images. For n = 2, such a structure coincides with the (specialization order of the) Khalimsky topology and, for n > 2, it allows for a variety of Jordan curves richer than that provided by the Khalimsky topology.
Název v anglickém jazyce
Relation-induced connectedness in the digital plane
Popis výsledku anglicky
We introduce and discuss a connectedness induced by n-ary relations (n > 1 an integer) on their underlying sets. In particular, we focus on certain n-ary relations with the induced connectedness allowing for a definition of digital Jordan curves. For every integer n > 1, we introduce one such n-ary relation on the digital plane Z2 and prove a digital analogue of the Jordan curve theorem for the induced connectedness. It follows that these n-ary relations may be used as convenient structures on the digital plane for the study of geometric properties of digital images. For n = 2, such a structure coincides with the (specialization order of the) Khalimsky topology and, for n > 2, it allows for a variety of Jordan curves richer than that provided by the Khalimsky topology.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
AEQUATIONES MATHEMATICAE
ISSN
0001-9054
e-ISSN
1420-8903
Svazek periodika
2018
Číslo periodika v rámci svazku
95
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
16
Strana od-do
75-90
Kód UT WoS článku
000419962100005
EID výsledku v databázi Scopus
2-s2.0-85029519228