Evolutionary Analysis is a Powerful Complement to Energy Calculations Allowing Entropy-Driven Stabilization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F18%3APU130688" target="_blank" >RIV/00216305:26230/18:PU130688 - isvavai.cz</a>
Výsledek na webu
<a href="https://loschmidt.chemi.muni.cz/peg/wp-content/uploads/2018/09/acscatal18b.pdf" target="_blank" >https://loschmidt.chemi.muni.cz/peg/wp-content/uploads/2018/09/acscatal18b.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acscatal.8b01677" target="_blank" >10.1021/acscatal.8b01677</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evolutionary Analysis is a Powerful Complement to Energy Calculations Allowing Entropy-Driven Stabilization
Popis výsledku v původním jazyce
Stability is one of the most important characteristics of proteins employed as biocatalysts, biotherapeutics and biomaterials, and the role of computational approaches in modifying protein stability is rapidly expanding. We have recently identified stabilizing mutations in haloalkane dehalogenase DhaA using phylogenetic analysis, but were not able to reproduce the effects of these mutations using force-field calculations. Here we test four different hypotheses to explain the molecular basis of stabilization using structural, biochemical, biophysical and computational analyses. We demonstrate that protein stabilization by these evolution-based mutations is entropy-driven, in contrast to the enthalpy-driven stabilization by mutations derived from force-field calculations. These results suggest that phylogenetic analysis should always be used to complement energetic calculations in protein stabilization endeavors. Furthermore, the insights gained in this work can stimulate the development of new theoretical approaches for the prediction of entropic contributions to protein stability.
Název v anglickém jazyce
Evolutionary Analysis is a Powerful Complement to Energy Calculations Allowing Entropy-Driven Stabilization
Popis výsledku anglicky
Stability is one of the most important characteristics of proteins employed as biocatalysts, biotherapeutics and biomaterials, and the role of computational approaches in modifying protein stability is rapidly expanding. We have recently identified stabilizing mutations in haloalkane dehalogenase DhaA using phylogenetic analysis, but were not able to reproduce the effects of these mutations using force-field calculations. Here we test four different hypotheses to explain the molecular basis of stabilization using structural, biochemical, biophysical and computational analyses. We demonstrate that protein stabilization by these evolution-based mutations is entropy-driven, in contrast to the enthalpy-driven stabilization by mutations derived from force-field calculations. These results suggest that phylogenetic analysis should always be used to complement energetic calculations in protein stabilization endeavors. Furthermore, the insights gained in this work can stimulate the development of new theoretical approaches for the prediction of entropic contributions to protein stability.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACS Catalysis
ISSN
2155-5435
e-ISSN
—
Svazek periodika
2018
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
9420-9428
Kód UT WoS článku
000447224100051
EID výsledku v databázi Scopus
2-s2.0-85053636839