Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Out-of-Vocabulary Word Recovery Using FST-Based Subword Unit Clustering in a Hybrid ASR System

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F18%3APU130739" target="_blank" >RIV/00216305:26230/18:PU130739 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.fit.vutbr.cz/research/pubs/all.php?id=11725" target="_blank" >http://www.fit.vutbr.cz/research/pubs/all.php?id=11725</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICASSP.2018.8462221" target="_blank" >10.1109/ICASSP.2018.8462221</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Out-of-Vocabulary Word Recovery Using FST-Based Subword Unit Clustering in a Hybrid ASR System

  • Popis výsledku v původním jazyce

    The paper presents a new approach to extracting useful information from out-of-vocabulary (OOV) speech regions in ASR system output. The system makes use of a hybrid decoding network with both words and sub-word units. In the decoded lattices, candidates for OOV regions are identified as sub-graphs of sub-word units. To facilitate OOV word recovery, we search for recurring OOVs by clustering the detected candidate OOVs. The metrics for clustering is based on a comparison of the sub-graphs corresponding to the OOV candidates. The proposed method discovers repeating outof- vocabulary words and finds their graphemic representation more robustly than more conventional techniques taking into account only one best sub-word string hypotheses.

  • Název v anglickém jazyce

    Out-of-Vocabulary Word Recovery Using FST-Based Subword Unit Clustering in a Hybrid ASR System

  • Popis výsledku anglicky

    The paper presents a new approach to extracting useful information from out-of-vocabulary (OOV) speech regions in ASR system output. The system makes use of a hybrid decoding network with both words and sub-word units. In the decoded lattices, candidates for OOV regions are identified as sub-graphs of sub-word units. To facilitate OOV word recovery, we search for recurring OOVs by clustering the detected candidate OOVs. The metrics for clustering is based on a comparison of the sub-graphs corresponding to the OOV candidates. The proposed method discovers repeating outof- vocabulary words and finds their graphemic representation more robustly than more conventional techniques taking into account only one best sub-word string hypotheses.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of ICASSP 2018

  • ISBN

    978-1-5386-4658-8

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

    5919-5923

  • Název nakladatele

    IEEE Signal Processing Society

  • Místo vydání

    Calgary

  • Místo konání akce

    Calgary

  • Datum konání akce

    15. 4. 2018

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000446384606016