Out-of-Vocabulary Word Recovery Using FST-Based Subword Unit Clustering in a Hybrid ASR System
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F18%3APU130739" target="_blank" >RIV/00216305:26230/18:PU130739 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.fit.vutbr.cz/research/pubs/all.php?id=11725" target="_blank" >http://www.fit.vutbr.cz/research/pubs/all.php?id=11725</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICASSP.2018.8462221" target="_blank" >10.1109/ICASSP.2018.8462221</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Out-of-Vocabulary Word Recovery Using FST-Based Subword Unit Clustering in a Hybrid ASR System
Popis výsledku v původním jazyce
The paper presents a new approach to extracting useful information from out-of-vocabulary (OOV) speech regions in ASR system output. The system makes use of a hybrid decoding network with both words and sub-word units. In the decoded lattices, candidates for OOV regions are identified as sub-graphs of sub-word units. To facilitate OOV word recovery, we search for recurring OOVs by clustering the detected candidate OOVs. The metrics for clustering is based on a comparison of the sub-graphs corresponding to the OOV candidates. The proposed method discovers repeating outof- vocabulary words and finds their graphemic representation more robustly than more conventional techniques taking into account only one best sub-word string hypotheses.
Název v anglickém jazyce
Out-of-Vocabulary Word Recovery Using FST-Based Subword Unit Clustering in a Hybrid ASR System
Popis výsledku anglicky
The paper presents a new approach to extracting useful information from out-of-vocabulary (OOV) speech regions in ASR system output. The system makes use of a hybrid decoding network with both words and sub-word units. In the decoded lattices, candidates for OOV regions are identified as sub-graphs of sub-word units. To facilitate OOV word recovery, we search for recurring OOVs by clustering the detected candidate OOVs. The metrics for clustering is based on a comparison of the sub-graphs corresponding to the OOV candidates. The proposed method discovers repeating outof- vocabulary words and finds their graphemic representation more robustly than more conventional techniques taking into account only one best sub-word string hypotheses.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of ICASSP 2018
ISBN
978-1-5386-4658-8
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
5919-5923
Název nakladatele
IEEE Signal Processing Society
Místo vydání
Calgary
Místo konání akce
Calgary
Datum konání akce
15. 4. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000446384606016