Gaussian meta-embeddings for efficient scoring of a heavy-tailed PLDA model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F18%3APU130769" target="_blank" >RIV/00216305:26230/18:PU130769 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.fit.vut.cz/research/publication/11790/" target="_blank" >https://www.fit.vut.cz/research/publication/11790/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21437/Odyssey.2018-49" target="_blank" >10.21437/Odyssey.2018-49</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Gaussian meta-embeddings for efficient scoring of a heavy-tailed PLDA model
Popis výsledku v původním jazyce
Embeddings in machine learning are low-dimensional representations of complex input patterns, with the property that simple geometric operations like Euclidean distances and dot products can be used for classification and comparison tasks. We introduce meta-embeddings, which live in more general inner product spaces and which are designed to better propagate uncertainty through the embedding bottleneck. Traditional embeddings are trained to maximize between-class and minimize within-class distances. Meta-embeddings are trained to maximize relevant information throughput. As a proof of concept in speaker recognition, we derive an extractor from the familiar generative Gaussian PLDA model (GPLDA). We show that GPLDA likelihood ratio scores are given by Hilbert space inner products between Gaussian likelihood functions, which we term Gaussian meta-embeddings (GMEs). Meta-embedding extractors can be generatively or discriminatively trained. GMEs extracted by GPLDA have fixed precisions and do not propagate uncertainty. We show that a generalization to heavy-tailed PLDA gives GMEs with variable precisions, which do propagate uncertainty. Experiments on NIST SRE 2010 and 2016 show that the proposed method applied to i-vectors without length normalization is up to 20% more accurate than GPLDA applied to length-normalized i-vectors.
Název v anglickém jazyce
Gaussian meta-embeddings for efficient scoring of a heavy-tailed PLDA model
Popis výsledku anglicky
Embeddings in machine learning are low-dimensional representations of complex input patterns, with the property that simple geometric operations like Euclidean distances and dot products can be used for classification and comparison tasks. We introduce meta-embeddings, which live in more general inner product spaces and which are designed to better propagate uncertainty through the embedding bottleneck. Traditional embeddings are trained to maximize between-class and minimize within-class distances. Meta-embeddings are trained to maximize relevant information throughput. As a proof of concept in speaker recognition, we derive an extractor from the familiar generative Gaussian PLDA model (GPLDA). We show that GPLDA likelihood ratio scores are given by Hilbert space inner products between Gaussian likelihood functions, which we term Gaussian meta-embeddings (GMEs). Meta-embedding extractors can be generatively or discriminatively trained. GMEs extracted by GPLDA have fixed precisions and do not propagate uncertainty. We show that a generalization to heavy-tailed PLDA gives GMEs with variable precisions, which do propagate uncertainty. Experiments on NIST SRE 2010 and 2016 show that the proposed method applied to i-vectors without length normalization is up to 20% more accurate than GPLDA applied to length-normalized i-vectors.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of Odyssey 2018
ISBN
—
ISSN
2312-2846
e-ISSN
—
Počet stran výsledku
8
Strana od-do
349-356
Název nakladatele
International Speech Communication Association
Místo vydání
Les Sables d'Olonne
Místo konání akce
Les Sables d'Olonne, France
Datum konání akce
26. 6. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—