A Reality Check on Inference at Mobile Networks Edge
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F19%3APU132061" target="_blank" >RIV/00216305:26230/19:PU132061 - isvavai.cz</a>
Výsledek na webu
<a href="https://dl.acm.org/citation.cfm?doid=3301418.3313946" target="_blank" >https://dl.acm.org/citation.cfm?doid=3301418.3313946</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3301418.3313946" target="_blank" >10.1145/3301418.3313946</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Reality Check on Inference at Mobile Networks Edge
Popis výsledku v původním jazyce
Edge computing is considered a key enabler to deploy ArtificialIntelligence platforms to provide real-time applications such asAR/VR or cognitive assistance. Previous works show computingcapabilities deployed very close to the user can actually reduce theend-to-end latency of such interactive applications. Nonetheless,the main performance bottleneck remains in the machine learninginference operation. In this paper, we question some assumptionsof these works, as the network location where edge computing isdeployed, and considered software architectures within the frame-work of a couple of popular machine learning tasks. Our experimen-tal evaluation shows that after performance tuning that leveragesrecent advances in deep learning algorithms and hardware, net-work latency is now the main bottleneck on end-to-end applicationperformance. We also report that deploying computing capabilitiesat the first network node still provides latency reduction but, over-all, it is not required by all applications. Based on our findings, weoverview the requirements and sketch the design of an adaptivearchitecture for general machine learning inference across edgelocations.
Název v anglickém jazyce
A Reality Check on Inference at Mobile Networks Edge
Popis výsledku anglicky
Edge computing is considered a key enabler to deploy ArtificialIntelligence platforms to provide real-time applications such asAR/VR or cognitive assistance. Previous works show computingcapabilities deployed very close to the user can actually reduce theend-to-end latency of such interactive applications. Nonetheless,the main performance bottleneck remains in the machine learninginference operation. In this paper, we question some assumptionsof these works, as the network location where edge computing isdeployed, and considered software architectures within the frame-work of a couple of popular machine learning tasks. Our experimen-tal evaluation shows that after performance tuning that leveragesrecent advances in deep learning algorithms and hardware, net-work latency is now the main bottleneck on end-to-end applicationperformance. We also report that deploying computing capabilitiesat the first network node still provides latency reduction but, over-all, it is not required by all applications. Based on our findings, weoverview the requirements and sketch the design of an adaptivearchitecture for general machine learning inference across edgelocations.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 2nd ACM International Workshop on Edge Systems, Analytics and Networking (EDGESYS '19)
ISBN
978-1-4503-6275-7
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
54-59
Název nakladatele
Association for Computing Machinery
Místo vydání
Dressden
Místo konání akce
Dressden
Datum konání akce
25. 3. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000470896200010