Satisfiability Solving Meets Evolutionary Optimisation in Designing Approximate Circuits
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F20%3APU138634" target="_blank" >RIV/00216305:26230/20:PU138634 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.fit.vut.cz/research/publication/12354/" target="_blank" >https://www.fit.vut.cz/research/publication/12354/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-51825-7_33" target="_blank" >10.1007/978-3-030-51825-7_33</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Satisfiability Solving Meets Evolutionary Optimisation in Designing Approximate Circuits
Popis výsledku v původním jazyce
Approximate circuits that trade the chip area or power consumption for the precision of the computation play a key role in development of energy-aware systems. Designing complex approximate circuits is, however, very difficult, especially, when a given approximation error has to be guaranteed. Evolutionary search algorithms together with SAT-based error evaluation currently represent one of the most successful approaches for automated circuit approximation. In this paper, we apply satisfiability solving not only for circuit evaluation but also for its minimisation. We consider and evaluate several approaches to this task, both inspired by existing works as well as novel ones. Our experiments show that a combined strategy, integrating evolutionary search and SMT-based sub-circuit minimisation (using quantified theory of arrays) that we propose, is able to find complex approximate circuits (e.g. 16-bit multipliers) with considerably better trade-offs between the circuit precision and size than existing~approaches.
Název v anglickém jazyce
Satisfiability Solving Meets Evolutionary Optimisation in Designing Approximate Circuits
Popis výsledku anglicky
Approximate circuits that trade the chip area or power consumption for the precision of the computation play a key role in development of energy-aware systems. Designing complex approximate circuits is, however, very difficult, especially, when a given approximation error has to be guaranteed. Evolutionary search algorithms together with SAT-based error evaluation currently represent one of the most successful approaches for automated circuit approximation. In this paper, we apply satisfiability solving not only for circuit evaluation but also for its minimisation. We consider and evaluate several approaches to this task, both inspired by existing works as well as novel ones. Our experiments show that a combined strategy, integrating evolutionary search and SMT-based sub-circuit minimisation (using quantified theory of arrays) that we propose, is able to find complex approximate circuits (e.g. 16-bit multipliers) with considerably better trade-offs between the circuit precision and size than existing~approaches.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ20-02328Y" target="_blank" >GJ20-02328Y: CAQtuS: Počítačem podporovaná kvantitativní syntéza</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Theory and Applications of Satisfiability Testing - SAT 2020
ISBN
978-3-030-51824-0
ISSN
—
e-ISSN
—
Počet stran výsledku
11
Strana od-do
481-491
Název nakladatele
Springer International Publishing
Místo vydání
Alghero
Místo konání akce
Alghero
Datum konání akce
3. 7. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000711645300033