Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Speaker activity driven neural speech extraction

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F21%3APU140966" target="_blank" >RIV/00216305:26230/21:PU140966 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.fit.vut.cz/research/publication/12479/" target="_blank" >https://www.fit.vut.cz/research/publication/12479/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICASSP39728.2021.9414998" target="_blank" >10.1109/ICASSP39728.2021.9414998</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Speaker activity driven neural speech extraction

  • Popis výsledku v původním jazyce

    Target speech extraction, which extracts the speech of a target speaker in a mixture given auxiliary speaker clues, has recently received increased interest. Various clues have been investigated such as pre-recorded enrollment utterances, direction information, or video of the target speaker. In this paper, we explore the use of speaker activity information as an auxiliary clue for single-channel neural network-based speech extraction. We propose a speaker activity driven speech extraction neural network (ADEnet) and show that it can achieve performance levels competitive with enrollmentbased approaches, without the need for pre-recordings. We further demonstrate the potential of the proposed approach for processing meeting-like recordings, where speaker activity obtained from a diarization system is used as a speaker clue for ADEnet. We show that this simple yet practical approach can successfully extract speakers after diarization, which leads to improved ASR performance when using a single microphone, especially in high overlapping conditions, with relative word error rate reduction of up to 25 %.

  • Název v anglickém jazyce

    Speaker activity driven neural speech extraction

  • Popis výsledku anglicky

    Target speech extraction, which extracts the speech of a target speaker in a mixture given auxiliary speaker clues, has recently received increased interest. Various clues have been investigated such as pre-recorded enrollment utterances, direction information, or video of the target speaker. In this paper, we explore the use of speaker activity information as an auxiliary clue for single-channel neural network-based speech extraction. We propose a speaker activity driven speech extraction neural network (ADEnet) and show that it can achieve performance levels competitive with enrollmentbased approaches, without the need for pre-recordings. We further demonstrate the potential of the proposed approach for processing meeting-like recordings, where speaker activity obtained from a diarization system is used as a speaker clue for ADEnet. We show that this simple yet practical approach can successfully extract speakers after diarization, which leads to improved ASR performance when using a single microphone, especially in high overlapping conditions, with relative word error rate reduction of up to 25 %.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings

  • ISBN

    978-1-7281-7605-5

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

    6099-6103

  • Název nakladatele

    IEEE Signal Processing Society

  • Místo vydání

    Toronto

  • Místo konání akce

    Toronto, Canada

  • Datum konání akce

    6. 6. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000704288406074