Auxiliary Loss Function for Target Speech Extraction and Recognition with Weak Supervision Based on Speaker Characteristics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F21%3APU142960" target="_blank" >RIV/00216305:26230/21:PU142960 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.isca-speech.org/archive/interspeech_2021/zmolikova21_interspeech.html" target="_blank" >https://www.isca-speech.org/archive/interspeech_2021/zmolikova21_interspeech.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21437/Interspeech.2021-986" target="_blank" >10.21437/Interspeech.2021-986</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Auxiliary Loss Function for Target Speech Extraction and Recognition with Weak Supervision Based on Speaker Characteristics
Popis výsledku v původním jazyce
Automatic speech recognition systems deteriorate in presence of overlapped speech. A popular approach to alleviate this is target speech extraction. The extraction system is usually trained with a loss function measuring the discrepancy between the estimated and the reference target speech. This often leads to distortions to the target signal which is detrimental to the recognition accuracy. Additionally, it is necessary to have the strong supervision provided by parallel data consisting of speech mixtures and single-speaker signals. We propose an auxiliary loss function for retraining the target speech extraction. It is composed of two parts: first, a speaker identity loss, forcing the estimated speech to have correct speaker characteristics, and second, a mixture consistency loss, making the extracted sources sum back to the original mixture. The only supervision required for the proposed loss is speaker characteristics obtained from several segments spoken by the target speaker. Such weak supervision makes the loss suitable for adapting the system directly on real recordings. We show that the proposed loss yields signals more suitable for speech recognition and further, we can gain additional improvements by adaptation to target data. Overall, we can reduce the word error rate on LibriCSS dataset from 27.4% to 24.0%.
Název v anglickém jazyce
Auxiliary Loss Function for Target Speech Extraction and Recognition with Weak Supervision Based on Speaker Characteristics
Popis výsledku anglicky
Automatic speech recognition systems deteriorate in presence of overlapped speech. A popular approach to alleviate this is target speech extraction. The extraction system is usually trained with a loss function measuring the discrepancy between the estimated and the reference target speech. This often leads to distortions to the target signal which is detrimental to the recognition accuracy. Additionally, it is necessary to have the strong supervision provided by parallel data consisting of speech mixtures and single-speaker signals. We propose an auxiliary loss function for retraining the target speech extraction. It is composed of two parts: first, a speaker identity loss, forcing the estimated speech to have correct speaker characteristics, and second, a mixture consistency loss, making the extracted sources sum back to the original mixture. The only supervision required for the proposed loss is speaker characteristics obtained from several segments spoken by the target speaker. Such weak supervision makes the loss suitable for adapting the system directly on real recordings. We show that the proposed loss yields signals more suitable for speech recognition and further, we can gain additional improvements by adaptation to target data. Overall, we can reduce the word error rate on LibriCSS dataset from 27.4% to 24.0%.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LTAIN19087" target="_blank" >LTAIN19087: Multi-lingualita v řečových technologiích</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of 2021 Interspeech
ISBN
—
ISSN
1990-9772
e-ISSN
—
Počet stran výsledku
5
Strana od-do
1464-1468
Název nakladatele
International Speech Communication Association
Místo vydání
Brno
Místo konání akce
Brno
Datum konání akce
30. 8. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—