Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Auxiliary Loss Function for Target Speech Extraction and Recognition with Weak Supervision Based on Speaker Characteristics

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F21%3APU142960" target="_blank" >RIV/00216305:26230/21:PU142960 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.isca-speech.org/archive/interspeech_2021/zmolikova21_interspeech.html" target="_blank" >https://www.isca-speech.org/archive/interspeech_2021/zmolikova21_interspeech.html</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.21437/Interspeech.2021-986" target="_blank" >10.21437/Interspeech.2021-986</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Auxiliary Loss Function for Target Speech Extraction and Recognition with Weak Supervision Based on Speaker Characteristics

  • Popis výsledku v původním jazyce

    Automatic speech recognition systems deteriorate in presence of overlapped speech. A popular approach to alleviate this is target speech extraction. The extraction system is usually trained with a loss function measuring the discrepancy between the estimated and the reference target speech. This often leads to distortions to the target signal which is detrimental to the recognition accuracy. Additionally, it is necessary to have the strong supervision provided by parallel data consisting of speech mixtures and single-speaker signals. We propose an auxiliary loss function for retraining the target speech extraction. It is composed of two parts: first, a speaker identity loss, forcing the estimated speech to have correct speaker characteristics, and second, a mixture consistency loss, making the extracted sources sum back to the original mixture. The only supervision required for the proposed loss is speaker characteristics obtained from several segments spoken by the target speaker. Such weak supervision makes the loss suitable for adapting the system directly on real recordings. We show that the proposed loss yields signals more suitable for speech recognition and further, we can gain additional improvements by adaptation to target data. Overall, we can reduce the word error rate on LibriCSS dataset from 27.4% to 24.0%.

  • Název v anglickém jazyce

    Auxiliary Loss Function for Target Speech Extraction and Recognition with Weak Supervision Based on Speaker Characteristics

  • Popis výsledku anglicky

    Automatic speech recognition systems deteriorate in presence of overlapped speech. A popular approach to alleviate this is target speech extraction. The extraction system is usually trained with a loss function measuring the discrepancy between the estimated and the reference target speech. This often leads to distortions to the target signal which is detrimental to the recognition accuracy. Additionally, it is necessary to have the strong supervision provided by parallel data consisting of speech mixtures and single-speaker signals. We propose an auxiliary loss function for retraining the target speech extraction. It is composed of two parts: first, a speaker identity loss, forcing the estimated speech to have correct speaker characteristics, and second, a mixture consistency loss, making the extracted sources sum back to the original mixture. The only supervision required for the proposed loss is speaker characteristics obtained from several segments spoken by the target speaker. Such weak supervision makes the loss suitable for adapting the system directly on real recordings. We show that the proposed loss yields signals more suitable for speech recognition and further, we can gain additional improvements by adaptation to target data. Overall, we can reduce the word error rate on LibriCSS dataset from 27.4% to 24.0%.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LTAIN19087" target="_blank" >LTAIN19087: Multi-lingualita v řečových technologiích</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of 2021 Interspeech

  • ISBN

  • ISSN

    1990-9772

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

    1464-1468

  • Název nakladatele

    International Speech Communication Association

  • Místo vydání

    Brno

  • Místo konání akce

    Brno

  • Datum konání akce

    30. 8. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku