Predicting students' flow experience through behavior data in gamified educational systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F21%3APU144723" target="_blank" >RIV/00216305:26230/21:PU144723 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.fit.vut.cz/research/publication/12735/" target="_blank" >https://www.fit.vut.cz/research/publication/12735/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1186/s40561-021-00175-6" target="_blank" >10.1186/s40561-021-00175-6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Predicting students' flow experience through behavior data in gamified educational systems
Popis výsledku v původním jazyce
The flow experience (i.e., challenge-skill balance, action-awareness merging, clear goals, unambiguous feedback, concentration, sense of control, loss of self-consciousness, transformation of time, and autotelic experience) is an experience highly related to the learning experience. One of the current challenges is to identify whether students are managing to achieve this experience in educational systems. The methods currently used to identify students flow experience are based on self-reports or equipment (e.g., eye trackers or electroencephalograms). The main problem with these methods is the high cost of the equipment and the impossibility of applying them massively. To address this challenge, we used behavior data logs produced by students during the use of a gamified educational system to predict the students flow experience. Through a data-driven study (N = 23) using structural equation modeling, we identified possibilities to predict the students flow experience through the speed of students actions. With this initial study, we advance the literature, especially contributing to the field of student experience analysis, by bringing insights showing how to step towards automatic students flow experience identification in gamified educational systems.
Název v anglickém jazyce
Predicting students' flow experience through behavior data in gamified educational systems
Popis výsledku anglicky
The flow experience (i.e., challenge-skill balance, action-awareness merging, clear goals, unambiguous feedback, concentration, sense of control, loss of self-consciousness, transformation of time, and autotelic experience) is an experience highly related to the learning experience. One of the current challenges is to identify whether students are managing to achieve this experience in educational systems. The methods currently used to identify students flow experience are based on self-reports or equipment (e.g., eye trackers or electroencephalograms). The main problem with these methods is the high cost of the equipment and the impossibility of applying them massively. To address this challenge, we used behavior data logs produced by students during the use of a gamified educational system to predict the students flow experience. Through a data-driven study (N = 23) using structural equation modeling, we identified possibilities to predict the students flow experience through the speed of students actions. With this initial study, we advance the literature, especially contributing to the field of student experience analysis, by bringing insights showing how to step towards automatic students flow experience identification in gamified educational systems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Smart Learning Environments
ISSN
2196-7091
e-ISSN
—
Svazek periodika
8
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
SG - Singapurská republika
Počet stran výsledku
18
Strana od-do
1-18
Kód UT WoS článku
000717490300001
EID výsledku v databázi Scopus
2-s2.0-85118944820