A Methodology for Multimodal Learning Analytics and Flow Experience Identification within Gamified Assignments
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F20%3APU138860" target="_blank" >RIV/00216305:26230/20:PU138860 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.fit.vut.cz/research/publication/12184/" target="_blank" >https://www.fit.vut.cz/research/publication/12184/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3334480.3383060" target="_blank" >10.1145/3334480.3383060</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Methodology for Multimodal Learning Analytics and Flow Experience Identification within Gamified Assignments
Popis výsledku v původním jazyce
Much research has sought to provide a flow experience for students in gamified educational systems to increase motivation and engagement. However, there is still a lack of quantitative research for evaluating the influence of the flow state on learning outcomes. One of the issues related to flow experience identification is that used techniques are often invasive or not suitable for massive applications. The current paper suggests a way to deal with this challenge. We describe a methodology based on multimodal learning analytics, aimed to provide automatic students flow experience identification in the gamified assignments and measuring its influence on the learning outcomes. The application of the developed methodology showed that there are correlations between learning outcomes and flow state, but they depend on the initial level of the user. This finding suggests adding dynamic difficulty adjustment to the gamified assignment.
Název v anglickém jazyce
A Methodology for Multimodal Learning Analytics and Flow Experience Identification within Gamified Assignments
Popis výsledku anglicky
Much research has sought to provide a flow experience for students in gamified educational systems to increase motivation and engagement. However, there is still a lack of quantitative research for evaluating the influence of the flow state on learning outcomes. One of the issues related to flow experience identification is that used techniques are often invasive or not suitable for massive applications. The current paper suggests a way to deal with this challenge. We describe a methodology based on multimodal learning analytics, aimed to provide automatic students flow experience identification in the gamified assignments and measuring its influence on the learning outcomes. The application of the developed methodology showed that there are correlations between learning outcomes and flow state, but they depend on the initial level of the user. This finding suggests adding dynamic difficulty adjustment to the gamified assignment.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems
ISBN
978-1-4503-6819-3
ISSN
—
e-ISSN
—
Počet stran výsledku
9
Strana od-do
1-9
Název nakladatele
Association for Computing Machinery
Místo vydání
Honolulu
Místo konání akce
Honolulu
Datum konání akce
25. 4. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000626317803089