Robust Teeth Detection in 3D Dental Scans by Automated Multi-View Landmarking
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F22%3APU144344" target="_blank" >RIV/00216305:26230/22:PU144344 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scitepress.org/PublicationsDetail.aspx?ID=6XIfWnl5LKU=&t=1" target="_blank" >https://www.scitepress.org/PublicationsDetail.aspx?ID=6XIfWnl5LKU=&t=1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5220/0010770700003123" target="_blank" >10.5220/0010770700003123</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Robust Teeth Detection in 3D Dental Scans by Automated Multi-View Landmarking
Popis výsledku v původním jazyce
Landmark detection is frequently an intermediate step in medical data analysis. More and more often, these data are represented in the form of 3D models. An example is a 3D intraoral scan of dentition used in orthodontics, where landmarking is notably challenging due to malocclusion, teeth shift, and frequent teeth missing. Whats more, in terms of 3D data, the DNN processing comes with high requirements for memory and computational time, which do not meet the needs of clinical applications. We present a robust method for tooth landmark detection based on the multi-view approach, which transforms the task into a 2D domain, where the suggested network detects landmarks by heatmap regression from several viewpoints. Additionally, we propose a post-processing based on Multi-view Confidence and Maximum Heatmap Activation Confidence, which can robustly determine whether a tooth is missing or not. Experiments have shown that the combination of Attention U-Net, 100 viewpoints, and RANSAC consensus method is able to detect landmarks with an error of 0:75 0:96 mm. In addition to the promising accuracies, our method is robust to missing teeth, as it can correctly detect the presence of teeth in 97.68% cases.
Název v anglickém jazyce
Robust Teeth Detection in 3D Dental Scans by Automated Multi-View Landmarking
Popis výsledku anglicky
Landmark detection is frequently an intermediate step in medical data analysis. More and more often, these data are represented in the form of 3D models. An example is a 3D intraoral scan of dentition used in orthodontics, where landmarking is notably challenging due to malocclusion, teeth shift, and frequent teeth missing. Whats more, in terms of 3D data, the DNN processing comes with high requirements for memory and computational time, which do not meet the needs of clinical applications. We present a robust method for tooth landmark detection based on the multi-view approach, which transforms the task into a 2D domain, where the suggested network detects landmarks by heatmap regression from several viewpoints. Additionally, we propose a post-processing based on Multi-view Confidence and Maximum Heatmap Activation Confidence, which can robustly determine whether a tooth is missing or not. Experiments have shown that the combination of Attention U-Net, 100 viewpoints, and RANSAC consensus method is able to detect landmarks with an error of 0:75 0:96 mm. In addition to the promising accuracies, our method is robust to missing teeth, as it can correctly detect the presence of teeth in 97.68% cases.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
15th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2022)
ISBN
978-989-758-552-4
ISSN
—
e-ISSN
—
Počet stran výsledku
11
Strana od-do
24-34
Název nakladatele
Institute for Systems and Technologies of Information, Control and Communication
Místo vydání
Vienna
Místo konání akce
Wien, Austria
Datum konání akce
9. 2. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000778898600002