Training Speaker Embedding Extractors Using Multi-Speaker Audio with Unknown Speaker Boundaries
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F22%3APU146060" target="_blank" >RIV/00216305:26230/22:PU146060 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.isca-speech.org/archive/pdfs/interspeech_2022/stafylakis22_interspeech.pdf" target="_blank" >https://www.isca-speech.org/archive/pdfs/interspeech_2022/stafylakis22_interspeech.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21437/Interspeech.2022-10165" target="_blank" >10.21437/Interspeech.2022-10165</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Training Speaker Embedding Extractors Using Multi-Speaker Audio with Unknown Speaker Boundaries
Popis výsledku v původním jazyce
In this paper, we demonstrate a method for training speaker em- bedding extractors using weak annotation. More specifically, we are using the full VoxCeleb recordings and the name of the celebrities appearing on each video without knowledge of the time intervals the celebrities appear in the video. We show that by combining a baseline speaker diarization algorithm that re- quires no training or parameter tuning, a modified loss with aggregation over segments, and a two-stage training approach, we are able to train a competitive ResNet-based embedding extractor. Finally, we experiment with two different aggregation functions and analyze their behaviour in terms of their gradients.
Název v anglickém jazyce
Training Speaker Embedding Extractors Using Multi-Speaker Audio with Unknown Speaker Boundaries
Popis výsledku anglicky
In this paper, we demonstrate a method for training speaker em- bedding extractors using weak annotation. More specifically, we are using the full VoxCeleb recordings and the name of the celebrities appearing on each video without knowledge of the time intervals the celebrities appear in the video. We show that by combining a baseline speaker diarization algorithm that re- quires no training or parameter tuning, a modified loss with aggregation over segments, and a two-stage training approach, we are able to train a competitive ResNet-based embedding extractor. Finally, we experiment with two different aggregation functions and analyze their behaviour in terms of their gradients.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH
ISBN
—
ISSN
1990-9772
e-ISSN
—
Počet stran výsledku
5
Strana od-do
605-609
Název nakladatele
International Speech Communication Association
Místo vydání
Incheon
Místo konání akce
Incheon Korea
Datum konání akce
18. 9. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—