Surrogate Modeling of Optimal Control Based Collision Avoidance System for Multirotor Unmanned Aerial Vehicles
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F23%3APU149409" target="_blank" >RIV/00216305:26230/23:PU149409 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10311265" target="_blank" >https://ieeexplore.ieee.org/document/10311265</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/DASC58513.2023.10311265" target="_blank" >10.1109/DASC58513.2023.10311265</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Surrogate Modeling of Optimal Control Based Collision Avoidance System for Multirotor Unmanned Aerial Vehicles
Popis výsledku v původním jazyce
A dynamically changing operating environment, along with constraints imposed through applicable safety requirements, pose significant challenges to autonomous multi-rotor manned and unmanned aerial vehicle operations in urban areas. Safety-critical onboard collision avoidance capability requires fast decision making accounting for uncertainties arising in complex environments. Successive convexification approach is applied to generate collision avoidance trajectories assuming both static and moving obstacles. The uncertainties arising in estimated state of moving obstacles are accounted for by construction of Polynomial Chaos Expansion based surrogate model. The obtained surrogate model can be evaluated in real-time to update the collision avoidance trajectory in case of change of tracked obstacle's state. The designed trajectories are subsequently tracked using a closed-loop Model Predictive Control scheme assuming a quadcopter configuration.
Název v anglickém jazyce
Surrogate Modeling of Optimal Control Based Collision Avoidance System for Multirotor Unmanned Aerial Vehicles
Popis výsledku anglicky
A dynamically changing operating environment, along with constraints imposed through applicable safety requirements, pose significant challenges to autonomous multi-rotor manned and unmanned aerial vehicle operations in urban areas. Safety-critical onboard collision avoidance capability requires fast decision making accounting for uncertainties arising in complex environments. Successive convexification approach is applied to generate collision avoidance trajectories assuming both static and moving obstacles. The uncertainties arising in estimated state of moving obstacles are accounted for by construction of Polynomial Chaos Expansion based surrogate model. The obtained surrogate model can be evaluated in real-time to update the collision avoidance trajectory in case of change of tracked obstacle's state. The designed trajectories are subsequently tracked using a closed-loop Model Predictive Control scheme assuming a quadcopter configuration.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
AIAA/IEEE Digital Avionics Systems Conference - Proceedings
ISBN
979-8-3503-3357-2
ISSN
2155-7195
e-ISSN
—
Počet stran výsledku
7
Strana od-do
1-7
Název nakladatele
Institute of Electrical and Electronics Engineers
Místo vydání
Barcelona
Místo konání akce
Barcelona
Datum konání akce
1. 10. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—