BERTraffic: BERT-based Joint Speaker Role and Speaker Change Detection for Air Traffic Control Communications
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F23%3APU149419" target="_blank" >RIV/00216305:26230/23:PU149419 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10022718" target="_blank" >https://ieeexplore.ieee.org/document/10022718</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/SLT54892.2023.10022718" target="_blank" >10.1109/SLT54892.2023.10022718</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
BERTraffic: BERT-based Joint Speaker Role and Speaker Change Detection for Air Traffic Control Communications
Popis výsledku v původním jazyce
Automatic speech recognition (ASR) allows transcribing the communications between air traffic controllers (ATCOs) and aircraft pilots. The transcriptions are used later to extract ATC named entities, e.g., aircraft callsigns. One common challenge is speech activity detection (SAD) and speaker diarization (SD). In the failure condition, two or more segments remain in the same recording, jeopardizing the overall performance. We propose a system that combines SAD and a BERT model to perform speaker change detection and speaker role detection (SRD) by chunking ASR transcripts, i.e., SD with a defined number of speakers together with SRD. The proposed model is evaluated on real-life public ATC databases. Our BERT SD model baseline reaches up to 10% and 20% token-based Jaccard error rate (JER) in public and private ATC databases. We also achieved relative improvements of 32% and 7.7% in JERs and SD error rate (DER), respectively, compared to VBx, a well-known SD system.1
Název v anglickém jazyce
BERTraffic: BERT-based Joint Speaker Role and Speaker Change Detection for Air Traffic Control Communications
Popis výsledku anglicky
Automatic speech recognition (ASR) allows transcribing the communications between air traffic controllers (ATCOs) and aircraft pilots. The transcriptions are used later to extract ATC named entities, e.g., aircraft callsigns. One common challenge is speech activity detection (SAD) and speaker diarization (SD). In the failure condition, two or more segments remain in the same recording, jeopardizing the overall performance. We propose a system that combines SAD and a BERT model to perform speaker change detection and speaker role detection (SRD) by chunking ASR transcripts, i.e., SD with a defined number of speakers together with SRD. The proposed model is evaluated on real-life public ATC databases. Our BERT SD model baseline reaches up to 10% and 20% token-based Jaccard error rate (JER) in public and private ATC databases. We also achieved relative improvements of 32% and 7.7% in JERs and SD error rate (DER), respectively, compared to VBx, a well-known SD system.1
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
IEEE Spoken Language Technology Workshop, SLT 2022 - Proceedings
ISBN
978-1-6654-7189-3
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
633-640
Název nakladatele
IEEE Signal Processing Society
Místo vydání
Doha
Místo konání akce
Doha
Datum konání akce
9. 1. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000968851900086