Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Joint Energy-Based Model for Robust Speech Classification System against Dirty-Label Backdoor Poisoning Attacks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F23%3APU150862" target="_blank" >RIV/00216305:26230/23:PU150862 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/10389697" target="_blank" >https://ieeexplore.ieee.org/document/10389697</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Joint Energy-Based Model for Robust Speech Classification System against Dirty-Label Backdoor Poisoning Attacks

  • Popis výsledku v původním jazyce

    Our novel technique utilizes a Joint Energy-based Model (JEM) that integrates both discriminative and generative approaches to increase resistance against dirty-label backdoor attacks. Our approach is especially effective when the trigger is short or hardly perceivable. We simulate the attack on the Speech Commands Dataset consisting of 1 s audio clips. During training, we use JEM to model a view of the input implemented by a randomly selected 610 ms window. During inference, we combine all (40) possible views utilizing a generative part of JEM. The resulting system has slightly decreased accuracy but significantly increased resistance shown in multiple scenarios. Interestingly, replacing JEM with a standard discriminative model (Disc) provides increased resistance with a lesser effect compared to JEM but maintains accuracy. We introduce an extension motivated by semi-supervised training that further improves JEM but not Disc. JEM can also benefit from Gaussian noise during evaluation.

  • Název v anglickém jazyce

    Joint Energy-Based Model for Robust Speech Classification System against Dirty-Label Backdoor Poisoning Attacks

  • Popis výsledku anglicky

    Our novel technique utilizes a Joint Energy-based Model (JEM) that integrates both discriminative and generative approaches to increase resistance against dirty-label backdoor attacks. Our approach is especially effective when the trigger is short or hardly perceivable. We simulate the attack on the Speech Commands Dataset consisting of 1 s audio clips. During training, we use JEM to model a view of the input implemented by a randomly selected 610 ms window. During inference, we combine all (40) possible views utilizing a generative part of JEM. The resulting system has slightly decreased accuracy but significantly increased resistance shown in multiple scenarios. Interestingly, replacing JEM with a standard discriminative model (Disc) provides increased resistance with a lesser effect compared to JEM but maintains accuracy. We introduce an extension motivated by semi-supervised training that further improves JEM but not Disc. JEM can also benefit from Gaussian noise during evaluation.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů