Understanding User Behavior in Carousel Recommendation Systems for Click Modeling and Learning to Rank
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F24%3APU154632" target="_blank" >RIV/00216305:26230/24:PU154632 - isvavai.cz</a>
Výsledek na webu
<a href="https://dl.acm.org/doi/abs/10.1145/3616855.3635734" target="_blank" >https://dl.acm.org/doi/abs/10.1145/3616855.3635734</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Understanding User Behavior in Carousel Recommendation Systems for Click Modeling and Learning to Rank
Popis výsledku v původním jazyce
Although carousels (also-known as multilists) have become the standard user interface for recommender systems in many domains (e-commerce, streaming services, etc.) replacing the ranked list, there are many unanswered questions and undeveloped areas when compared to the literature for ranked lists. This is due to two significant barriers: lack of public datasets and lack of eye tracking user studies of browsing behavior. Clicks, the standard feedback collected by recommender systems, are insufficient to understand the whole interaction process of a user with a recommender requiring system designers to make assumptions, especially on browsing behavior. Eye tracking provides a means to elucidate the process and test these assumptions. In this extended abstract, the PhD project is outlined, which aims to address the open research questions in carousel recommender systems by: 1) improving our understanding of users' browsing behavior with carousels, 2) formulating a new click model based on
Název v anglickém jazyce
Understanding User Behavior in Carousel Recommendation Systems for Click Modeling and Learning to Rank
Popis výsledku anglicky
Although carousels (also-known as multilists) have become the standard user interface for recommender systems in many domains (e-commerce, streaming services, etc.) replacing the ranked list, there are many unanswered questions and undeveloped areas when compared to the literature for ranked lists. This is due to two significant barriers: lack of public datasets and lack of eye tracking user studies of browsing behavior. Clicks, the standard feedback collected by recommender systems, are insufficient to understand the whole interaction process of a user with a recommender requiring system designers to make assumptions, especially on browsing behavior. Eye tracking provides a means to elucidate the process and test these assumptions. In this extended abstract, the PhD project is outlined, which aims to address the open research questions in carousel recommender systems by: 1) improving our understanding of users' browsing behavior with carousels, 2) formulating a new click model based on
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů