Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Contextual Biasing Methods for Improving Rare Word Detection in Automatic Speech Recognition

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F24%3APU154700" target="_blank" >RIV/00216305:26230/24:PU154700 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10447465" target="_blank" >https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10447465</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICASSP48485.2024.10447465" target="_blank" >10.1109/ICASSP48485.2024.10447465</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Contextual Biasing Methods for Improving Rare Word Detection in Automatic Speech Recognition

  • Popis výsledku v původním jazyce

    In specialized domains like Air Traffic Control (ATC), a notable challenge in porting a deployed Automatic Speech Recognition (ASR) system from one airport to another is the alteration in the set of crucial words that must be ac- curately detected in the new environment. Typically, such words have limited occurrences in training data, making it impractical to retrain the ASR system. This paper explores innovative word-boosting techniques to improve the detec- tion rate of such rare words in the ASR hypotheses for the ATC domain. Two acoustic models are investigated: a hybrid CNN-TDNNF model trained from scratch and a pre-trained wav2vec2-based XLSR model fine-tuned on a common ATC dataset. The word boosting is done in three ways. First, an out-of-vocabulary word addition method is explored. Second, G-boosting is explored, which amends the language model before building the decoding graph. Third, the boosting is performed on the fly during decoding using lattice re-scoring. The results indicate that the G-boosting method performs best and provides an approximately 30-43% relative improvement in recall of the boosted words. Moreover, a relative improve- ment of up to 48% is obtained upon combining G-boosting and lattice-rescoring

  • Název v anglickém jazyce

    Contextual Biasing Methods for Improving Rare Word Detection in Automatic Speech Recognition

  • Popis výsledku anglicky

    In specialized domains like Air Traffic Control (ATC), a notable challenge in porting a deployed Automatic Speech Recognition (ASR) system from one airport to another is the alteration in the set of crucial words that must be ac- curately detected in the new environment. Typically, such words have limited occurrences in training data, making it impractical to retrain the ASR system. This paper explores innovative word-boosting techniques to improve the detec- tion rate of such rare words in the ASR hypotheses for the ATC domain. Two acoustic models are investigated: a hybrid CNN-TDNNF model trained from scratch and a pre-trained wav2vec2-based XLSR model fine-tuned on a common ATC dataset. The word boosting is done in three ways. First, an out-of-vocabulary word addition method is explored. Second, G-boosting is explored, which amends the language model before building the decoding graph. Third, the boosting is performed on the fly during decoding using lattice re-scoring. The results indicate that the G-boosting method performs best and provides an approximately 30-43% relative improvement in recall of the boosted words. Moreover, a relative improve- ment of up to 48% is obtained upon combining G-boosting and lattice-rescoring

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings

  • ISBN

    979-8-3503-4485-1

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

    12652-12656

  • Název nakladatele

    IEEE Signal Processing Society

  • Místo vydání

    Seoul

  • Místo konání akce

    Seoul

  • Datum konání akce

    14. 4. 2024

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku